GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
//// Singular library normaliz.lib version="version normaliz.lib 4.0.2.0 Sept_2015 "; // $Id: c95d3329501ff768a1a262abad95a50b4b4f5452 $ category="Commutative Algebra"; info=" LIBRARY: normaliz.lib Provides an interface for the use of Normaliz 2.11 or newer within SINGULAR. AUTHORS: Winfried Bruns, [email protected] Christof Soeger, [email protected] OVERVIEW: @texinfo The library normaliz.lib provides an interface for the use of Normaliz 2.11 or newer within SINGULAR. The exchange of data is via files. In addition to the top level functions that aim at objects of type ideal or ring, several other auxiliary functions allow the user to apply Normaliz to data of type intmat. Therefore SINGULAR can be used as a comfortable environment for the work with Normaliz. @* Please see the @code{Normaliz.pdf} (included in the Normaliz distribution) for a more extensive documentation of Normaliz. Normaliz allows the use of a grading. In the Singular functions that access Normaliz the parameter grading is an intvec that assigns a (not necessarily positive) degree to every variable of the ambient polynomial ring. But it must give positive degrees to the generators given to function. Singular and Normaliz exchange data via files. These files are automatically created and erased behind the scenes. As long as one wants to use only the ring-theoretic functions there is no need for file management. @*Note that the numerical invariants computed by Normaliz can be accessed in this \"automatic file mode\". @*However, if Singular is used as a frontend for Normaliz or the user wants to inspect data not automatically returned to Singular, then an explicit filename and a path can be specified for the exchange of data. Moreover, the library provides functions for access to these files. Deletion of the files is left to the user. Use of this library requires the program Normaliz to be installed. You can download it from @uref{http://www.mathematik.uni-osnabrueck.de/normaliz/}. Please make sure that the executables are in the search path or use setNmzExecPath (@ref{setNmzExecPath}). @end texinfo KEYWORDS: integral closure; normalization; toric ring PROCEDURES: intclToricRing(ideal I) computes the integral closure of the toric ring generated by the leading monomials of the elements of I in the basering normalToricRing(ideal I) computes the normalization of the toric ring generated by the leading monomials of the elements of I normalToricRingFromBinomials(ideal I) computes the normalization of the polynomial ring modulo the unique minimal binomial prime ideal of the binomial ideal I ehrhartRing(ideal I) considers the exponent vectors of the elements of I as points of a lattice polytope and computes the integral cloure of the polytopal algebra intclMonIdeal(ideal I) Computes the integral closure of the Rees algebra of the ideal generated by the leading monomials of the elements of I torusInvariants(intmat T) computes the ring of invariants of a torus action finiteDiagInvariants(intmat C) computes the ring of invariants of a finite abelian group acting diagonally on a polynomial ring diagInvariants(intmat C) computes the ring of invariants of a diagonalizable group intersectionValRings(intmat V) computes the intersection of the polynomial ring with the valuation rings of monomial valuations intersectionValRingIdeals(intmat V) computes ideals of monomial valuations showNuminvs() prints the numerical invariants found by Normaliz exportNuminvs() exports the numerical invariants found by Normaliz setNmzOption(string s, int onoff) sets the option s to onoff showNmzOptions() prints the enabled options to the standard output normaliz(intmat sgr,int nmz_mode) applies Normaliz setNmzExecPath(string nmz_exec_path_name) sets the path to the Normaliz executable writeNmzData(intmat sgr, int n_mode) creates an input file for Normaliz readNmzData(string nmz_suffix) reads the Normaliz output file with the specified suffix setNmzFilename(string nmz_filename_name) sets the filename for the exchange of data setNmzDataPath(string nmz_data_path_name) sets the directory for the exchange of data writeNmzPaths() writes the path names into two files startNmz() retrieves the path names written by writeNmzPaths rmNmzFiles() removes the files created for and by Normaliz mons2intmat(ideal I) returns the intmat whose rows represent the leading exponents of the elements of I intmat2mons(intmat expo_vecs) returns the ideal generated by the monomials which have the rows of expo_vecs as exponent vector binomials2intmat(ideal I) returns the intmat whose rows represent the exponents of the elements of the binomial ideal I "; // helpers static proc desInt(string intname, int value) // define, export and set an integer { int exists; if(defined(`intname`)){exists=1;} if(!exists) { int `intname`=value;export(`intname`); } `intname`=value; } static proc desString(string stringname, string value) // define, export and set a string { int exists; if(defined(`stringname`)){exists=1;} if(!exists) { string `stringname`=value;export(`stringname`); } `stringname`=value; } static proc queryInt(string intname) // if intname is defined, return(intname), else return(0) { int exists,value; if(defined(`intname`)){exists=1;} if(!exists) { return(0); } return(`intname`); } static proc queryString(string stringname) // if stringname is defined, return(stringname), else return("") { int exists; string value; if(defined(`stringname`)){exists=1;} if(!exists) { return(""); } return(`stringname`); } static proc fileExists(string f) { return(status (f,"exists")=="yes"); } static proc appendSlash(string s) // if nonempty and / is not the terminating char { if(size(s)>0) { if(s[size(s)]!="/") { s=s+"/"; return(s); } } return(s); } // filenames and paths proc setNmzExecPath(string nmz_exec_path_name) "USAGE: setNmzExecPath(string s); @code{s} path to the Normaliz executable CREATE: @code{Normaliz::nmz_exec_path} to save the given path @code{s} NOTE: It is not necessary to use this function if the Normaliz executable is in the search path of the system. SEE ALSO: setNmzOption EXAMPLE: example setNmzExecPath; shows an example" { desString("nmz_exec_path",nmz_exec_path_name); nmz_exec_path=appendSlash(nmz_exec_path); } example { "EXAMPLE:";echo = 2; setNmzExecPath("../Normaliz/"); } proc setNmzFilename(string nmz_filename_name) "USAGE: setNmzFilename(string s); CREATE: @code{Normaliz::nmz_filename} to save the given filename @code{s} NOTE: The function sets the filename for the exchange of data. Unless a path is set by setNmzDataPath, files will be created in the current directory. @* If a non-empty filename is set, the files created for and by Normaliz are kept. This is mandatory for the data access functions (see @ref{writeNmzData} and @ref{readNmzData}). @* Resetting the filename by setNmzFilename(\"\") forces the library to return to deletion of temporary files, but the files created while the filename had been set will not be erased. SEE ALSO: writeNmzData, readNmzData, setNmzDataPath, rmNmzFiles EXAMPLE: example setNmzFilename; shows an example" { desString("nmz_filename",nmz_filename_name); if(nmz_filename_name!="") { desInt("nmz_files_keep_switch",1); } else { desInt("nmz_files_keep_switch",0); } } example { "EXAMPLE:";echo = 2; setNmzDataPath("examples/"); setNmzFilename("example1"); //now the files for the exchange with Normaliz are examples/example1.SUFFIX } proc setNmzDataPath(string nmz_data_path_name) "USAGE: setNmzDataPath(string s); CREATE: @code{Normaliz::nmz_data_path} to save the given path @code{s} NOTE: The function sets the path for the exchange of data. By default the files will be created in the current directory. @* It seems that Singular cannot use filenames starting with @code{~} or @code{$HOME} in its input/output functions. @* You must also avoid path names starting with @code{/} if you work under Cygwin, since Singular and Normaliz interpret them in different ways. SEE ALSO: writeNmzData, readNmzData, rmNmzFiles, setNmzFilename EXAMPLE: example setNmzDataPath; shows an example" { desString("nmz_data_path",nmz_data_path_name); nmz_data_path=appendSlash(nmz_data_path); } example { "EXAMPLE:";echo = 2; setNmzDataPath("examples/"); setNmzFilename("example1"); //now the files for the exchange with Normalize are examples/example1.SUFFIX } proc writeNmzPaths(); "USAGE: writeNmzPaths(); CREATE: the file nmz_sing_exec.path where the path to the Normaliz executable is saved @* the file nmz_sing_data.path where the directory for the exchange of data is saved NOTE: Both files are saved in the current directory. If one of the names has not been defined, the corresponding file is created, but contains nothing. SEE ALSO: setNmzDataPath, setNmzExecPath, startNmz EXAMPLE: example writeNmzPaths; shows an example "{ link outf=":w nmz_sing_exec.path"; write(outf, queryString("nmz_exec_path")); close(outf); outf=":w nmz_sing_data.path"; write(outf, queryString("nmz_data_path")); close(outf); } example { "EXAMPLE:";echo = 2; setNmzExecPath("../Normaliz/"); writeNmzPaths(); int dummy=system("sh","cat nmz_sing_exec.path"); dummy=system("sh","cat nmz_sing_data.path"); } proc startNmz() "USAGE: startNmz(); PURPOSE: This function reads the files written by @code{writeNmzPaths()}, retrieves the path names, and types them on the standard output (as far as they have been set). Thus, once the path names have been stored, a Normaliz session can simply be opened by this function. SEE ALSO: setNmzDataPath, setNmzExecPath, writeNmzPaths EXAMPLE: example startNmz; shows an example " { link inf=":r nmz_sing_exec.path"; string s=read(inf); int i,p; p=findWord("/",s,1); if(p!=-1) { for(i=size(s);i>=1;i--) { if(s[i]=="/") { s=s[1..i]; break; } } desString("nmz_exec_path",s); "nmz_exec_path is",nmz_exec_path; } else { "nmz_exec_path not set"; } inf=":r nmz_sing_data.path"; s=read(inf); p=findWord("/",s,1); if(p!=-1) { for(i=size(s);i>=1;i--) { if(s[i]=="/") { s=s[1..i]; break; } } desString("nmz_data_path",s); "nmz_data_path is",nmz_data_path; } else { "nmz_data_path not set"; } } example { "EXAMPLE:"; echo=2; startNmz(); } static proc getNmzFile() { if(queryInt("nmz_files_keep_switch")) { return(queryString("nmz_data_path")+queryString("nmz_filename")); } else { return(queryString("nmz_filename")); } } static proc makeTempNmzDataPath() { string testdir, testdir1; int i,dummy; testdir1="/tmp/nmz_sing_"+string(system("pid")); testdir=testdir1; while(fileExists(testdir)) { i++; testdir=testdir1+string(i); } dummy=system("sh","mkdir "+ testdir); desString("nmz_filename",testdir+"/nmz"); //files are nmz+suffix in testdir } static proc eraseTempNmzDataPath(); { int dummy; string tmpdir=getNmzFile(); tmpdir=tmpdir[1..size(tmpdir)-4]; // remove "/nmz" dummy=system("sh","rm -r "+tmpdir); setNmzFilename(""); } static proc setNmzExec() { return(queryString("nmz_exec_path")+"normaliz"); } proc rmNmzFiles() "USAGE: rmNmzFiles(); PURPOSE: This function removes the files created for and by Normaliz, using the last filename specified. It needs an explicit filename set (see @ref{setNmzFilename}). SEE ALSO: writeNmzData, readNmzData, setNmzFilename, setNmzDataPath EXAMPLE: example rmNmzFiles; shows an example "{ if(!queryInt("nmz_files_keep_switch")) { ERROR("rmNmzFiles: no filename specified"); } list suffixes="in","gen","out","cst","typ","egn","esp","inv","tri","ht1", "ext","dec", "lat", "mod"; int i,dummy; string f; for(i=1;i<=size(suffixes);i++) { f=getNmzFile()+"."+suffixes[i]; if (fileExists(f)) { dummy=system("sh","rm "+f+ "&> /dev/null"); } } } example { "EXAMPLE:"; echo=2; setNmzFilename("VeryInteresting"); rmNmzFiles(); } // parsing normaliz output static proc digit(string s) { if(s==" ") // skip blanks quickly { return(0); } if((s[1]>="0" && s[1]<="9")||s[1]=="-") { return(1); } return(0); } static proc nextWord(string s, int p) { int j,sw,ew; for(;p<=size(s);p++) // must start with a letter { if((s[p]>="a" && s[p]<="z")|| (s[p]>="A" && s[p]<="Z")) { sw=p; break; } } if(p>size(s)) { return(-1,-1); // no word found } for(;p<=size(s);p++) // now numerals and -_ allowed { if(!((s[p]>="a" && s[p]<="z")|| (s[p]>="A" && s[p]<="Z")|| (s[p]>="0" && s[p]<="9")|| s[p]=="_"||s[p]=="-")) { break; } } return(sw,p); } static proc getInt(string s, int p) { string nst; int i,j,en,sn; for(;p<=size(s);p++) { if(digit(s[p])) { sn=p; break; } } if(not(sn)) { return(0,-1); // -1 indicates: no number found } p++; for(;p<=size(s);p++) { if(!digit(s[p])) { en=p-1; break; } } if(p>size(s)) { en=size(s); } nst="i="+s[sn,en-sn+1]; execute(nst); return(i,p); } static proc getRational(string s, int p) { string nst; int i,j,en,sn; for(;p<=size(s);p++) { if(digit(s[p])) { sn=p; break; } } if(not(sn)) { return(0,-1); // -1 indicates: no number found } p++; int slash_at; for(;p<=size(s);p++) { if(s[p]=="/") { slash_at=p; p++; continue; } if(!digit(s[p])) { en=p-1; break; } } if(p>size(s)) { en=size(s); } if(slash_at) { nst="i="+s[sn,slash_at-sn]; execute(nst); nst="j="+s[slash_at+1,en-slash_at]; execute(nst); return(i,p,j); } nst="i="+s[sn,en-sn+1]; execute(nst); return(i,p); } static proc findWord(string s, string t, int p) { for(;p<=size(t)-size(s)+1;p++) { if(t[p]==s[1]) { if(t[p,size(s)]==s) { return(p+size(s)); } } } return(-1); } static proc skipEqualsign(string s,int p) { for(;p<=size(s);p++) { if(s[p]=="=") { break; } } return(p+1); } // input and output to/from normaliz //list must have pairs of intmat, nmz_mode static proc doWriteNmzData(list #) { string s; int i,j; link outf=":w "+ getNmzFile() +".in"; // also sets the filename intmat sgr; int num_rows, num_cols, n_mode; for (int k=1; k+1<=size(#); k=k+2) { //get data from the parameter list n_mode = #[k+1]; if (n_mode != -1) { //skip -1 mode sgr = #[k]; num_rows = nrows(sgr); num_cols = ncols(sgr); write(outf,num_rows); write(outf,num_cols); for(i=1;i<=nrows(sgr);i++) { s=""; for(j=1;j<=num_cols;j++) { s=s+string(sgr[i,j])+" "; } write(outf,s); } if (n_mode == 20) { write(outf,"grading");} if (n_mode == 0) { write(outf,"integral_closure");} if (n_mode == 1) { write(outf,"normalization");} if (n_mode == 2) { write(outf,"polytope");} if (n_mode == 3) { write(outf,"rees_algebra");} if (n_mode == 4) { write(outf,"inequalities");} if (n_mode == 5) { write(outf,"equations");} if (n_mode == 6) { write(outf,"congruences");} if (n_mode == 10) { write(outf,"lattice_ideal");} write(outf,""); } } close(outf); } static proc prepareGrading(list #) { if (size(#)==0) { return(0,-1); // mode -1 specifies discard the matrix } if (size(#)>1) { print(#); ERROR("To many parameters!"); } intmat g = intmat(#[1],1,size(#[1])); return (g,20); } proc writeNmzData(intmat sgr, int n_mode, list #) "USAGE: writeNmzData(intmat M, int mode); writeNmzData(intmat M, int mode, intmat M2, int mode2, ...); CREATE: Creates an input file for Normaliz from the matrix M. The second parameter sets the mode. How the matrix is interpreted depends on the mode. See the Normaliz documentation for more information. It is also possible to give more than one pair of matrix and mode. In this case all matrices and modes are written. This can be used to combine modes 4,5,6. Use mode=20 to specify a grading. NOTE: Needs an explicit filename set. The filename is created from the current filename. @* Note that all functions in normaliz.lib write and read their data automatically to and from the hard disk so that writeNmzData will hardly ever be used explicitly. SEE ALSO: readNmzData, rmNmzFiles, setNmzFilename, setNmzDataPath EXAMPLE: example writeNmzData; shows an example" { if(queryString("nmz_filename")=="") { ERROR("writeNmzData: no filename specified"); } doWriteNmzData(list(sgr, n_mode) + #); } example { "EXAMPLE:"; echo=2; setNmzFilename("VeryInteresting"); intmat sgr[3][3]=1,2,3,4,5,6,7,8,10; writeNmzData(sgr,1); int dummy=system("sh","cat VeryInteresting.in"); intmat Hyperplanes[2][3] = 2,-1,0, // 2x-y >= 0 1, 1,0; // x+y >= 0 intmat Equation[1][3] = 0,1,-1; // y = z intmat Congruence[1][4] = 1,0,0,3; // x = 0 (3) writeNmzData(Hyperplanes,4,Equation,5,Congruence,6); dummy=system("sh","cat VeryInteresting.in"); } proc readNmzData(string nmz_suffix) "USAGE: readNmzData(string suffix); RETURN: Reads an output file of Normaliz containing an integer matrix and returns it as an intmat. For example, this function is useful if one wants to inspect the support hyperplanes. The filename is created from the current filename and the suffix given to the function. NOTE: Needs an explicit filename set by setNmzFilename. @* Note that all functions in normaliz.lib write and read their data automatically so that readNmzData will usually not be used explicitly. @* This function reads only the first matrix in a file! SEE ALSO: writeNmzData, rmNmzFiles, setNmzFilename, setNmzDataPath EXAMPLE: example readNmzData; shows an example" { if(queryString("nmz_filename")=="") { ERROR("readNmzData: no filename specified"); } string s; int n_rows,n_cols; //number of rows/columns int p; //position int i,j; int returnvalue; string filename = getNmzFile() + "."+ nmz_suffix; link in_f=":r "+ filename; s=read(in_f); close(in_f); p=1; (n_rows,p)=getInt(s,p); (n_cols,p)=getInt(s,p); if (n_rows <= 0 || n_cols <= 0) { intmat empty; return(empty); } intmat nmz_gen[n_rows][n_cols]; for(i=1;i<=n_rows;i++) { for(j=1;j<=n_cols;j++) { (nmz_gen[i,j],p) = getInt(s,p); } } return(nmz_gen); } example { "EXAMPLE:"; echo=2; setNmzFilename("VeryInteresting"); intmat sgr[3][3]=1,2,3,4,5,6,7,8,10; intmat sgrnormal=normaliz(sgr,0); readNmzData("cst"); } // running normaliz (with options) // component 1 is name of option // 2 is default value // 3 is command line option to be passed to Normaliz // 4 indictes whether file "gen" is generated // value 2 of 4 indicates "no influence" static proc defNmzOptions() { if(!defined(nmz_options)) // can be defined only once { list nmz_options= list("supp",0,"-s",0), list("triang",0,"-tT",0), list("volume",0,"-v",0), list("hvect",0,"-p",0), list("height1",0,"-1",0), list("normal",0,"-n",1), list("normal_l",0,"-N",1), list("hilb",0,"-h",1), list("dual",0,"-d",1), list("control",0,"-c",2), list("allf",0,"-a",2), list("errorcheck",0,"-e",2), list("bigint",0,"-B",2), list("threads",0,"-x=",2); export(nmz_options); } } proc setNmzOption(string s, int onoff) "USAGE: setNmzOption(string s, int onoff); PURPOSE: If @code{onoff=1} the option @code{s} is activated, and if @code{onoff=0} it is deactivated. The Normaliz options are accessible via the following names: @* @code{-s: supp} @* @code{-t: triang} @* @code{-v: volume} @* @code{-p: hvect} @* @code{-1: height1} @* @code{-n: normal} @* @code{-N: normal_l} @* @code{-h: hilb} @* @code{-d: dual} @* @code{-a: allf} @* @code{-c: control} @* @code{-e: errorcheck} @* @code{-B: bigint} Use GMP for arbitrary precision integers @* @code{-x=N: threads} In this case the int parameter is used to set the number of threads N, 0 means no explicit limiting. In the next version of this library the options will be accessible via their standard Normaliz 3.0 names. SEE ALSO: showNmzOptions EXAMPLE: example setNmzOption; shows an example " { defNmzOptions(); for(int i=1;i<=size(nmz_options);i++) { if(s==nmz_options[i][1]) { nmz_options[i][2]=onoff; return(1); } } "Invalid option ", s; return(0); } example { "EXAMPLE:"; echo=2; setNmzOption("hilb",1); showNmzOptions(); } static proc collectNmzOptions() { defNmzOptions(); string run_options=" -f "; desInt("GenGen",1); // indicates whether "gen" is generated for(int i=1;i<=size(nmz_options);i++) { if(nmz_options[i][2]) { run_options=run_options+nmz_options[i][3]; if (nmz_options[i][1]=="threads") { run_options=run_options+string(nmz_options[i][2]); } run_options=run_options+" "; if(nmz_options[i][4]!=2) { GenGen=nmz_options[i][4]; } } } return(run_options+" "); } proc showNmzOptions() "USAGE: showNmzOptions(); RETURN: Returns the string of activated options. NOTE: This string is used as parameter when calling Normaliz. SEE ALSO: setNmzOption EXAMPLE: example showNmzOption; shows an example " { return(collectNmzOptions()); } example { "EXAMPLE:"; echo=2; setNmzOption("hilb",1); showNmzOptions(); } static proc runNormaliz(intmat sgr, int nmz_mode, list #) { if(!queryInt("nmz_files_keep_switch")) { makeTempNmzDataPath(); } doWriteNmzData(list(sgr, nmz_mode) + #); if(queryInt("nmz_files_keep_switch")) { int dummy=system("sh",setNmzExec()+ collectNmzOptions() + getNmzFile()); } else { string gotodir="/tmp"; string fname=getNmzFile(); fname=fname[6..size(fname)]; string exec="cd "+gotodir+" ; "; exec=exec+setNmzExec()+ collectNmzOptions()+" "; exec=exec+fname+" ;"; int dummy=system("sh",exec); } if(!GenGen) // return input matrix if "gen" has not been generated { if(!queryInt("nmz_files_keep_switch")) { eraseTempNmzDataPath(); } return(sgr); } intmat Gen=readNmzData("gen"); if(!defined(Num_Invs)) { list Num_Invs; export Num_Invs; } Num_Invs=getNuminvs(); if(!queryInt("nmz_files_keep_switch")) { eraseTempNmzDataPath(); } return(Gen); } proc normaliz(intmat sgr,int nmz_mode, list #) "USAGE: normaliz(intmat sgr,int nmz_mode); normaliz(intmat sgr, int nmz_mode, intmat sgr2, int nmz_mode2, ...); RETURN: The function applies Normaliz to the parameter sgr in the mode set by nmz_mode. The function returns the intmat defined by the file with suffix gen. It is also possible to give more than one pair of matrix and mode. In this case all matrices and modes are used. In this version one must use the old numerical types of input matrices according to the following table: @* @code{0: cone} @* @code{1: cone_and_lattice} @* @code{2: polytope} @* @code{3: rees_algebra} @* @code{4: inequalities} @* @code{5: equations} @* @code{6: congruences} @* @code{10: lattice_ideal} @* @code{20: grading} In the next vfersion all input types of Normaliz 3.0 will be accessible via their names. See the Normaliz manual for more information. NOTE: You will find procedures for many applications of Normaliz in this library, so the explicit call of this procedure may not be necessary. SEE ALSO: intclToricRing, normalToricRing, ehrhartRing, intclMonIdeal, torusInvariants, diagInvariants, finiteDiagInvariants, intersectionValRings, intersectionValRingIdeals EXAMPLE: example normaliz; shows an example " { return(runNormaliz(sgr,nmz_mode,#)); } example { "EXAMPLE:"; echo=2; ring R=0,(x,y,z),dp; intmat M[3][2]=3,1, 3,2, 1,3; normaliz(M,1); intmat Hyperplanes[2][3] = 2,-1,0, // 2x-y >= 0 1, 1,0; // x+y >= 0 intmat Equation[1][3] = 0,1,-1; // y = z intmat Congruence[1][4] = 1,0,0,3; // x = 0 (3) normaliz(Hyperplanes,4,Equation,5,Congruence,6); } // retrieving normaliz numerical invariants static proc getNuminvs() { string s; list num_invs; int p,sw,v_length,i,dummy_int; intvec dummy_vec; string type_inv,name_inv,dummy_bool; link in_f=":r "+ getNmzFile() + "."+"inv"; s=read(in_f); p=1; while(p<size(s)) { (sw,p)=nextWord(s,p); if(sw==-1) { break; } type_inv=s[sw..p-1]; if(type_inv=="vector") { (v_length,p)=getInt(s,p); (sw,p)=nextWord(s,p); name_inv=s[sw..p-1]; if(name_inv=="h-vector") { name_inv="h_vector"; } if(name_inv!="hilbert_polynomial" && name_inv!="hilbert_quasipolynomial") { for(i=1;i<=v_length;i++) { if(i==1) { (dummy_int,p)=getInt(s,p); dummy_vec=dummy_int; } else { (dummy_int,p)=getInt(s,p); dummy_vec=dummy_vec,dummy_int; } } num_invs=num_invs+list(list(name_inv,dummy_vec,"intvec")); } else { p=skipEqualsign(s,p); } } if(type_inv=="integer") { (sw,p)=nextWord(s,p); name_inv=s[sw..p-1]; if (name_inv!="hilbert_quasipolynomial_denom") { (dummy_int,p)=getInt(s,p); num_invs=num_invs+list(list(name_inv,dummy_int,"int")); } } if(type_inv=="boolean") { (sw,p)=nextWord(s,p); name_inv=s[sw..p-1]; p=skipEqualsign(s,p); (sw,p)=nextWord(s,p); dummy_bool=s[sw..p-1]; dummy_int=0; if(dummy_bool=="true") { dummy_int=1; } num_invs=num_invs+list(list(name_inv,dummy_int,"int")); } } return(num_invs); } proc showNuminvs() "USAGE: showNuminvs(); PURPOSE: prints the numerical invariants SEE ALSO: exportNuminvs EXAMPLE: example showNuminvs(); shows an example " { list dummy; int i; for(i=1;i<=size(Num_Invs);i++) { dummy=Num_Invs[i]; dummy[1],":", dummy[2]; } } example { "EXAMPLE:"; echo=2; ring R=0,(x,y,z,t),dp; ideal I=x3,x2y,y3; list l=intclMonIdeal(I); showNuminvs(); } proc exportNuminvs() "USAGE: exportNuminvs(); CREATE: Creates top-level variables which contain the numerical invariants. Depending on the options of normaliz different invariants are calculated. Use showNuminvs (@ref{showNuminvs}) to see which invariants are available. SEE ALSO: showNuminvs EXAMPLE: example exportNuminvs; shows an example " { list dummy; int i; string s; for(i=1;i<=size(Num_Invs);i++) { dummy=Num_Invs[i]; s=dummy[3]+" nmz_" + dummy[1] + "=dummy[2]; exportto(Top," + "nmz_" + dummy[1] + ");"; execute(s); } } example { "EXAMPLE:"; echo=2; ring R=0,(x,y,z,t),dp; ideal I=x3,x2y,y3; list l=intclMonIdeal(I); exportNuminvs(); // for example, now the following variables are set: nmz_hilbert_basis_elements; nmz_number_extreme_rays; nmz_rank; nmz_number_support_hyperplanes; nmz_multiplicity; nmz_primary; } // intmats to/from monomials proc mons2intmat(ideal I) "USAGE: mons2intmat(ideal I); RETURN: Returns the intmat whose rows represent the leading exponents of the (non-zero) elements of I. The length of each row is nvars(basering). SEE ALSO: intmat2mons EXAMPLE: example mons2intmat; shows an example" { int i,j,k; intmat expo_vecs[size(I)][nvars(basering)]; intvec expo_v; k=0; for(i=1;i<=ncols(I);i++) { if(I[i]!=0) { k++; expo_v=leadexp(I[i]); for(j=1;j<=nvars(basering);j++) { expo_vecs[k,j]=expo_v[j]; } } } return(expo_vecs); } example { "EXAMPLE:"; echo=2; ring R=0,(x,y,z),dp; ideal I=x2,y2,x2yz3; mons2intmat(I); } proc intmat2mons(intmat expo_vecs) "USAGE: intmat2mons(intmat M); RETURN: an ideal generated by the monomials which correspond to the exponent vectors given by the rows of @code{M} NOTE: The number of variables in the basering @code{nvars(basering)} has to be at least the number of columns @code{ncols(M)}, otherwise the function exits with an error. is thrown (see @ref{ERROR}). SEE ALSO: mons2intmat EXAMPLE: example intmat2mons; shows an example " { int i,j; poly m; ideal mons; if(nvars(basering)<ncols(expo_vecs)) { ERROR("intmat2mons: not enough variables in ring"); } for(i=1;i<=nrows(expo_vecs);i++) { m=1; for(j=1;j<=ncols(expo_vecs);j++) { m=m*var(j)^expo_vecs[i,j]; } mons=mons,m; } mons=simplify(mons,2); // get rid of starting 0 return(mons); } example { "EXAMPLE:"; echo=2; ring R=0,(x,y,z),dp; intmat expo_vecs[3][3] = 2,0,0, 0,2,0, 2,1,3; intmat2mons(expo_vecs); } static proc intmat2monsSel(intmat expo_vecs, int d) { int i,j; poly m; ideal mons; if(nvars(basering)<ncols(expo_vecs)-1) { ERROR("intmat2monsSel: not enough variables in ring"); } for(i=1;i<=nrows(expo_vecs);i++) { if(expo_vecs[i,ncols(expo_vecs)]==d) { m=1; for(j=1;j<=ncols(expo_vecs)-1;j++) { m=m*var(j)^expo_vecs[i,j]; } mons=mons,m; } } mons=simplify(mons,2); // get rid of starting 0 return(mons); } proc binomials2intmat(ideal I) "USAGE: binomials2intmat(ideal I); RETURN: Returns the intmat whose rows represent the exponents of the (non-zero) elements of I which have to be binomials. The length of each row is nvars(basering). SEE ALSO: mons2intmat, intmat2mons EXAMPLE: example binomials2intmat; shows an example" { int i,j,k; intmat expo_vecs[size(I)][nvars(basering)]; intvec expo_v; k=0; poly f; for(i=1; i<=ncols(I); i++) { if( I[i] != 0 ) { k++; f = I[i]; if (leadcoef(f) != 1) {f = -f}; //works in all characteristics if (size(f)!=2 || leadcoef(f)!=1 || leadcoef(f[2])!=-1) { ERROR(string("normalToricRing: binomial ideal expected: generator ",i,": ",I[i])); } expo_v = leadexp(f)-leadexp(f[2]); for(j=1;j<=nvars(basering);j++) { expo_vecs[k,j]=expo_v[j]; } } } return(expo_vecs); } example { "EXAMPLE:"; echo=2; ring S = 37,(u,v,w,x,y,z),dp; ideal I = u2v-xyz, ux2-vyz, uvw-y2z; binomials2intmat(I); } // integral closure of rings and ideals static proc runIntclToricRing(ideal I, int nmz_mode, list #) { intmat expo_vecs=mons2intmat(I); string dummy=collectNmzOptions(); // only to set GenGen return( intmat2mons( runNormaliz(expo_vecs,nmz_mode, prepareGrading(#)) ) ); } proc intclToricRing(ideal I, list #) "USAGE: intclToricRing(ideal I); intclToricRing(ideal I, intvec grading); RETURN: The toric ring S is the subalgebra of the basering generated by the leading monomials of the elements of I (considered as a list of polynomials). The function computes the integral closure T of S in the basering and returns an ideal listing the algebra generators of T over the coefficient field. @* The function returns the input ideal I if one of the options @code{supp}, @code{triang}, @code{volume}, or @code{hseries} has been activated. However, in this case some numerical invariants are computed, and some other data may be contained in files that you can read into Singular (see @ref{showNuminvs}, @ref{exportNuminvs}). NOTE: A mathematical remark: the toric ring depends on the list of monomials given, and not only on the ideal they generate! SEE ALSO: normalToricRing, ehrhartRing, intclMonIdeal EXAMPLE: example intclToricRing; shows an example " { return(runIntclToricRing(I,0,#)); } example { "EXAMPLE:"; echo=2; ring R=37,(x,y,t),dp; ideal I=x3,x2y,y3; intclToricRing(I); showNuminvs(); //now the same example with another grading intvec grading = 2,3,1; intclToricRing(I,grading); showNuminvs(); } proc normalToricRing(ideal I, list #) "USAGE: normalToricRing(ideal I); normalToricRing(ideal I, intvec grading); RETURN: The toric ring S is the subalgebra of the basering generated by the leading monomials of the elements of I (considered as a list of polynomials). The function computes the normalisation T of S and returns an ideal listing the algebra generators of T over the coefficient field. @* The function returns the input ideal I if one of the options @code{supp}, @code{triang}, @code{volume}, or @code{hseries} has been activated. However, in this case some numerical invariants are computed, and some other data may be contained in files that you can read into Singular (see @ref{showNuminvs}, @ref{exportNuminvs}). NOTE: A mathematical remark: the toric ring depends on the list of monomials given, and not only on the ideal they generate! SEE ALSO: intclToricRing, ehrhartRing, intclMonIdeal, normalToricRingFromBinomials EXAMPLE: example normalToricRing; shows an example " { return(runIntclToricRing(I,1,#)); } example { "EXAMPLE:"; echo=2; ring R = 37,(x,y,t),dp; ideal I = x3,x2y,y3; normalToricRing(I); } proc normalToricRingFromBinomials(ideal I, list #) "USAGE: normalToricRingFromBinomials(ideal I); normalToricRingFromBinomials(ideal I, intvec grading); RETURN: @texinfo @tex The ideal $I$ is generated by binomials of type $X^a-X^b$ (multiindex notation) in the surrounding polynomial ring $K[X]=K[X_1,...,X_n]$. The binomials represent a congruence on the monoid ${Z}^n$ with residue monoid $M$. Let $N$ be the image of $M$ in gp($M$)/torsion. Then $N$ is universal in the sense that every homomorphism from $M$ to an affine monoid factors through $N$. If $I$ is a prime ideal, then $K[N]= K[X]/I$. In general, $K[N]=K[X]/P$ where $P$ is the unique minimal prime ideal of $I$ generated by binomials of type $X^a-X^b$. The function computes the normalization of $K[N]$ and returns a newly created polynomial ring of the same Krull dimension, whose variables are $x(1),...,x(n-r)$, where $r$ is the rank of the matrix with rows $a-b$. (In general there is no canonical choice for such an embedding.) Inside this polynomial ring there is an ideal $I$ which lists the algebra generators of the normalization of $K[N]$. @end tex @end texinfo @* The function returns the input ideal I if one of the options @code{supp}, @code{triang}, @code{volume}, or @code{hseries} has been activated. However, in this case some numerical invariants are computed, and some other data may be contained in files that you can read into Singular (see @ref{showNuminvs}, @ref{exportNuminvs}). SEE ALSO: intclToricRing, normalToricRing, ehrhartRing, intclMonIdeal EXAMPLE: example normalToricRing; shows an example " { intmat expo_vecs = binomials2intmat(I); string dummy=collectNmzOptions(); // only to set GenGen intmat result = runNormaliz(expo_vecs,10,prepareGrading(#)); list baseringlist = ringlist(basering); ring S = (baseringlist[1]),(x(1..ncols(result))),dp; ideal I = intmat2mons(result); export(I); return (S); } example { "EXAMPLE:"; echo=2; ring R = 37,(u,v,w,x,y,z),dp; ideal I = u2v-xyz, ux2-wyz, uvw-y2z; def S = normalToricRingFromBinomials(I); setring S; I; } static proc runIntclMonIdeal(ideal I, int nmz_mode, list #) { intmat expo_vecs=mons2intmat(I); int i,last_comp; // we test if there is room for the Rees algebra for(i=1;i<=nrows(expo_vecs);i++) { if(expo_vecs[i,ncols(expo_vecs)]!=0) { last_comp=1; break; // no } } string dummy=collectNmzOptions(); // only to set GenGen //adjust size of input matrix if (!last_comp) { // remove last component intmat tmp[nrows(expo_vecs)][ncols(expo_vecs)-1] = expo_vecs[1..nrows(expo_vecs),1..(ncols(expo_vecs)-1)]; expo_vecs = tmp; } intmat nmz_data=runNormaliz(expo_vecs,nmz_mode,prepareGrading(#)); if(last_comp) { ideal I1=intmat2monsSel(nmz_data,1); return(list(I1)); } else { ideal I1=intmat2monsSel(nmz_data,1); ideal I2=intmat2mons(nmz_data); return(list(I1,I2)); } } proc ehrhartRing(ideal I) "USAGE: ehrhartRing(ideal I); RETURN: The exponent vectors of the leading monomials of the elements of I are considered as points of a lattice polytope P. The Ehrhart ring of a (lattice) polytope P is the monoid algebra defined by the monoid of lattice points in the cone over the polytope P; see Bruns and Gubeladze, Polytopes, Rings, and K-theory, Springer 2009, pp. 228, 229. The function returns a list of ideals: @* (i) If the last ring variable is not used by the monomials, it is treated as the auxiliary variable of the Ehrhart ring. The function returns two ideals, the first containing the monomials representing all the lattice points of the polytope, the second containing the algebra generators of the Ehrhart ring over the coefficient field. @* (ii) If the last ring variable is used by the monomials, the list returned contains only one ideal, namely the monomials representing the lattice points of the polytope. @* @* The function returns the a list containing the input ideal I if one of the options @code{supp}, @code{triang}, @code{volume}, or @code{hseries} has been activated. However, in this case some numerical invariants are computed, and some other data may be contained in files that you can read into Singular (see @ref{showNuminvs}, @ref{exportNuminvs}). NOTE: A mathematical remark: the Ehrhart ring depends on the list of monomials given, and not only on the ideal they generate! SEE ALSO: intclToricRing, normalToricRing, intclMonIdeal EXAMPLE: example ehrhartRing; shows an example " { return(runIntclMonIdeal(I,2)); } example { "EXAMPLE:"; echo=2; ring R=37,(x,y,t),dp; ideal J=x3,x2y,y3,xy2t7; ehrhartRing(J); } proc intclMonIdeal(ideal I, list #) "USAGE: intclMonIdeal(ideal I); intclMonIdeal(ideal I, intvec grading); RETURN: The exponent vectors of the leading monomials of the elements of I are considered as generators of a monomial ideal for which the normalization of its Rees algebra is computed. For a Definiton of the Rees algebra (or Rees ring) see Bruns and Herzog, Cohen-Macaulay rings, Cambridge University Press 1998, p. 182. The function returns a list of ideals: @* (i) If the last ring variable is not used by the monomials, it is treated as the auxiliary variable of the Rees algebra. The function returns two ideals, the first containing the monomials generating the integral closure of the monomial ideal, the second containing the algebra generators of the normalization of the Rees algebra. @* (ii) If the last ring variable is used by the monomials, the list returned contains only one ideal, namely the monomials generating the integral closure of the ideal. @* The function returns the a list containing the input ideal I if one of the options @code{supp}, @code{triang}, @code{volume}, or @code{hseries} has been activated. However, in this case some numerical invariants are computed, and some other data may be contained in files that you can read into Singular (see @ref{showNuminvs}, @ref{exportNuminvs}). SEE ALSO: intclToricRing, normalToricRing, ehrhartRing EXAMPLE: example intclMonIdeal; shows an example " { return(runIntclMonIdeal(I,3,#)); } example { "EXAMPLE"; echo=2; ring R=0,(x,y,z,t),dp; ideal I=x^2,y^2,z^3; list l=intclMonIdeal(I); l[1]; // integral closure of I l[2]; // monomials generating the integral closure of the Rees algebra } // torus invariants and valuation rings and ideals proc torusInvariants(intmat E, list #) "USAGE: torusInvariants(intmat A); torusInvariants(intmat A, intvec grading); RETURN: @texinfo Returns an ideal representing the list of monomials generating the ring of invariants as an algebra over the coefficient field. @tex $R^T$. @end tex @* The function returns the ideal given by the input matrix A if one of the options @code{supp}, @code{triang}, @code{volume}, or @code{hseries} has been activated. However, in this case some numerical invariants are computed, and some other data may be contained in files that you can read into Singular (see @ref{showNuminvs}, @ref{exportNuminvs}). @end texinfo BACKGROUND: @texinfo @tex Let $T = (K^*)^r$ be the $r$-dimensional torus acting on the polynomial ring $R = K[X_1 ,\ldots,X_n]$ diagonally. Such an action can be described as follows: there are integers $a_{i,j}$, $i=1,\ldots,r$, $j=1,\ldots,n$, such that $(\lambda_1,\ldots,\lambda_r)\in T$ acts by the substitution $$ X_j \mapsto \lambda_1^{a_{1,j}} \cdots \lambda_r^{a_{r,j}}X_j, \quad j=1,\ldots,n.$$ In order to compute the ring of invariants $R^T$ one must specify the matrix $A=(a_{i,j})$. @end tex @end texinfo SEE ALSO: diagInvariants, finiteDiagInvariants, intersectionValRings, intersectionValRingIdeals EXAMPLE: example torusInvariants; shows an example " { if(nvars(basering)!=ncols(E)) { ERROR("torusInvariants: wrong number of columns in matrix"); } string dummy=collectNmzOptions(); // only to set GenGen return( intmat2mons( runNormaliz(E,5,prepareGrading(#)) ) ); } example { "EXAMPLE:"; echo=2; ring R=0,(x,y,z,w),dp; intmat E[2][4] = -1,-1,2,0, 1,1,-2,-1; torusInvariants(E); } proc finiteDiagInvariants(intmat C, list #) "USAGE: finiteDiagInvariants(intmat U); finiteDiagInvariants(intmat U, intvec grading); RETURN: @texinfo @tex This function computes the ring of invariants of a finite abelian group $G$ acting diagonally on the surrounding polynomial ring $K[X_1,...,X_n]$. The group is the direct product of cyclic groups generated by finitely many elements $g_1,...,g_w$. The element $g_i$ acts on the indeterminate $X_j$ by $g_i(X_j)=\lambda_i^{u_{ij}}X_j$ where $\lambda_i$ is a primitive root of unity of order equal to $ord(g_i)$. The ring of invariants is generated by all monomials satisfying the system $u_{i1}a_1+\ldots+u_{in} a_n \equiv 0$ mod ord$(g_i)$, $i=1,\ldots,w$. The input to the function is the $w\times(n+1)$ matrix $U$ with rows $u_{i1}\ldots u_{in}$ ord$(gi)$, $i=1,\ldots,w$. The output is a monomial ideal listing the algebra generators of the subalgebra of invariants {$R^G=\{f\in R : g_i f = f$ for all $i=1,\ldots,w\}$}. @end tex @end texinfo @* The function returns the ideal given by the input matrix C if one of the options @code{supp}, @code{triang}, @code{volume}, or @code{hseries} has been activated. However, in this case some numerical invariants are computed, and some other data may be contained in files that you can read into Singular (see @ref{showNuminvs}, @ref{exportNuminvs}). NOTE: SEE ALSO: torusInvariants, diagInvariants, intersectionValRings, intersectionValRingIdeals EXAMPLE: example finiteDiagInvariants; shows an example " { if(nvars(basering)!=ncols(C)-1) { ERROR("finiteDiagInvariants: wrong number of columns in matrix"); } string dummy=collectNmzOptions(); // only to set GenGen return( intmat2mons( runNormaliz(C,6,prepareGrading(#)) ) ); } example { "EXAMPLE:"; echo=2; ring R = 0,(x,y,z,w),dp; intmat C[2][5] = 1,1,1,1,5, 1,0,2,0,7; finiteDiagInvariants(C); } proc diagInvariants(intmat E, intmat C, list #) "USAGE: diagInvariants(intmat A, intmat U); diagInvariants(intmat A, intmat U, intvec grading); RETURN: @texinfo @tex This function computes the ring of invariants of a diagonalizable group $D = T\times G$ where $T$ is a torus and $G$ is a finite abelian group, both acting diagonally on the polynomial ring $K[X_1,\ldots,X_n]$. The group actions are specified by the input matrices A and U. The first matrix specifies the torus action, the second the action of the finite group. See torusInvariants and finiteDiagInvariants for more detail. The output is a monomial ideal listing the algebra generators of the subalgebra of invariants. @end tex @end texinfo @* The function returns the ideal given by the input matrix A if one of the options @code{supp}, @code{triang}, @code{volume}, or @code{hseries} has been activated. However, in this case some numerical invariants are computed, and some other data may be contained in files that you can read into Singular (see @ref{showNuminvs}, @ref{exportNuminvs}). SEE ALSO: torusInvariants, finiteDiagInvariants, intersectionValRings, intersectionValRingIdeals EXAMPLE: example diagInvariants; shows an example " { if(nvars(basering)!=ncols(E) || nvars(basering)!=ncols(C)-1) { ERROR("diagInvariants: wrong number of columns in matrix"); } string dummy=collectNmzOptions(); // only to set GenGen return( intmat2mons( runNormaliz(E,5,C,6,prepareGrading(#)) ) ); } example { "EXAMPLE:"; echo=2; ring R=0,(x,y,z,w),dp; intmat E[2][4] = -1,-1,2,0, 1,1,-2,-1; intmat C[2][5] = 1,1,1,1,5, 1,0,2,0,7; diagInvariants(E,C); } proc intersectionValRings(intmat V, list #) "USAGE: intersectionValRings(intmat V, intvec grading); RETURN: The function returns a monomial ideal, to be considered as the list of monomials generating @math{S} as an algebra over the coefficient field. BACKGROUND: @texinfo @tex A discrete monomial valuation $v$ on $R = K[X_1 ,\ldots,X_n]$ is determined by the values $v(X_j)$ of the indeterminates. This function computes the subalgebra $S = \{ f \in R : v_i ( f ) \geq 0,\ i = 1,\ldots,r\}$ for several such valuations $v_i$, $i=1,\ldots,r$. It needs the matrix $V = (v_i(X_j))$ as its input. @end tex @end texinfo @* The function returns the ideal given by the input matrix V if one of the options @code{supp}, @code{triang}, @code{volume}, or @code{hseries} has been activated. However, in this case some numerical invariants are computed, and some other data may be contained in files that you can read into Singular (see @ref{showNuminvs}, @ref{exportNuminvs}). SEE ALSO: torusInvariants, diagInvariants, finiteDiagInvariants, intersectionValRingIdeals EXAMPLE: example intersectionValRings; shows an example " { if(nvars(basering)!=ncols(V)) { ERROR("intersectionValRings: wrong number of columns in matrix"); } intmat V1[nrows(V)+ncols(V)][ncols(V)]; int i,j; for(i=1;i<=ncols(V);i++) { V1[i,i]=1; } for(i=1;i<=nrows(V);i++) { for(j=1;j<=ncols(V);j++) { V1[i+ncols(V),j]=V[i,j]; } } string dummy=collectNmzOptions(); // only to set GenGen /* if(!GenGen) // return V { runNormaliz(V1,4,prepareGrading(#)); return(V); } */ return(intmat2mons(runNormaliz(V1,4,prepareGrading(#)))); } example { "EXAMPLE:"; echo=2; ring R=0,(x,y,z,w),dp; intmat V0[2][4]=0,1,2,3, -1,1,2,1; intersectionValRings(V0); } proc intersectionValRingIdeals(intmat V, list #) "USAGE: intersectionValRingIdeals(intmat V); intersectionValRingIdeals(intmat V, intvec grading); RETURN: The function returns two ideals, both to be considered as lists of monomials. The first is the system of monomial generators of @math{S}, the second the system of generators of @math{M}. @* The function returns a list consisting of the ideal given by the input matrix T if one of the options @code{supp}, @code{triang}, or @code{hvect} has been activated. However, in this case some numerical invariants are computed, and some other data may be contained in files that you can read into Singular (see @ref{showNuminvs}, @ref{exportNuminvs}). BACKGROUND: @texinfo @tex A discrete monomial valuation $v$ on $R = K[X_1 ,\ldots,X_n]$ is determined by the values $v(X_j)$ of the indeterminates. This function computes the subalgebra $S = \{ f \in R : v_i ( f ) \geq 0,\ i = 1,\ldots,r\}$ for several such valuations $v_i$, $i=1,\ldots,r$. It needs the matrix $V = (v_i(X_j))$ as its input. This function simultaneously determines the $S$-submodule $M = \{ f \in R : v_i(f) \geq w_i ,\ i = 1,\ldots,r\}$ for integers $w_1,\ldots\,w_r$. (If $w_i \geq 0$ for all $i$, $M$ is an ideal of $S$.) The numbers $w_i$ form the $(n+1)$th column of the input matrix. @end tex @end texinfo NOTE: The function also gives an error message if the matrix V has the wrong number of columns. SEE ALSO: torusInvariants, diagInvariants, finiteDiagInvariants, intersectionValRings EXAMPLE: example intersectionValRingIdeals; shows an example " { if(nvars(basering)!=ncols(V)-1) { ERROR("intersectionValRingIdeals: wrong number of columns in matrix"); } intmat V1[nrows(V)+ncols(V)][ncols(V)]; int i,j; for(i=1;i<=ncols(V);i++) { V1[i,i]=1; } for(i=1;i<=nrows(V);i++) { for(j=1;j<=ncols(V);j++) { V1[i+ncols(V),j]=V[i,j]; } } for(i=1;i<=nrows(V);i++) { V1[i+ncols(V),ncols(V)]=-V1[i+ncols(V),ncols(V)]; } string dummy=collectNmzOptions(); // only to set GenGen intmat nmz_data=runNormaliz(V1,4,prepareGrading(#)); ideal I1=intmat2monsSel(nmz_data,0); ideal I2=intmat2monsSel(nmz_data,1); return(list(I1,I2)); } example { "EXAMPLE:"; echo=2; ring R=0,(x,y,z,w),dp; intmat V[2][5]=0,1,2,3,4, -1,1,2,1,3; intersectionValRingIdeals(V); }