GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
# C4 M := [ [1] ]; G := Group( (1,2,3,4) ); iso := rec( 1 := G ); mu := []; dim := 5; # Cohomology over Z/4Z: #----------------------------------------------->>>> Z/4Z^(1 x 1) #----------------------------------------------->>>> Z/4Z^(1 x 1) #----------------------------------------------->>>> Z/4Z^(1 x 1) #----------------------------------------------->>>> Z/4Z^(1 x 1) #----------------------------------------------->>>> Z/4Z^(1 x 1) #----------------------------------------------->>>> Z/4Z^(1 x 1) #----------------------------------------------->>>> Z/4Z^(1 x 1) # 1: 1 x 3 matrix with rank 0 and kernel dimension 1. Time: 0.000 sec., # 2: 3 x 9 matrix with rank 2 and kernel dimension 1. Time: 0.000 sec., # 3: 9 x 27 matrix with rank 6 and kernel dimension 3. Time: 0.000 sec., # 4: 27 x 81 matrix with rank 20 and kernel dimension 7. Time: 0.000 sec., # 5: 81 x 243 matrix with rank 60 and kernel dimension 21. Time: 0.000 sec., # 6: 243 x 729 matrix with rank 182 and kernel dimension 61. Time: 0.040 sec., # 7: 729 x 2187 matrix with rank 546 and kernel dimension 183. Time: 0.296 sec., # 8: 2187 x 6561 matrix with rank 1640 and kernel dimension 547. Time: 3.524 sec., # 9: 6561 x 19683 matrix with rank 4920 and kernel dimension 1641. Time: 34.166 sec., # 10: 19683 x 59049 matrix with rank 14762 and kernel dimension 4921. Time: 345.982 sec., # Cohomology dimension at degree 0: GF(2)^(1 x 1) # Cohomology dimension at degree 1: GF(2)^(1 x 1) # Cohomology dimension at degree 2: GF(2)^(1 x 1) # Cohomology dimension at degree 3: GF(2)^(1 x 1) # Cohomology dimension at degree 4: GF(2)^(1 x 1) # Cohomology dimension at degree 5: GF(2)^(1 x 1) # Cohomology dimension at degree 6: GF(2)^(1 x 1) # Cohomology dimension at degree 7: GF(2)^(1 x 1) # Cohomology dimension at degree 8: GF(2)^(1 x 1) # Cohomology dimension at degree 9: GF(2)^(1 x 1)