GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
# S1 with C2-iso and a V4-point # 1 # 2 3 M := [ [1,2], [1,3], [2,3] ]; C2 := Group( (1,2) ); V4 := Group( (1,2), (3,4) ); iso := rec( 1 := V4, 2 := C2, 3 := C2 ); mu := []; dim := 4; # 1: 3 x 15 matrix with rank 2 and kernel dimension 1. Time: 0.000 sec. # 2: 15 x 51 matrix with rank 10 and kernel dimension 5. Time: 0.000 sec. # 3: 51 x 175 matrix with rank 37 and kernel dimension 14. Time: 0.000 sec. # 4: 175 x 611 matrix with rank 133 and kernel dimension 42. Time: 0.008 sec. # 5: 611 x 2127 matrix with rank 472 and kernel dimension 139. Time: 0.152 sec. # 6: 2127 x 7315 matrix with rank 1648 and kernel dimension 479. Time: 1.704 sec. # 7: 7315 x 24815 matrix with rank 5659 and kernel dimension 1656. Time: 22.466 sec. # 8: 24815 x 83139 matrix with rank 19147 and kernel dimension 5668. Time: 250.579 sec. # 9: 83139 x 275599 matrix with rank 63982 and kernel dimension 19157. Time: 2728.791 sec. # Cohomology dimension at degree 0: GF(2)^(1 x 1) # Cohomology dimension at degree 1: GF(2)^(1 x 3) # Cohomology dimension at degree 2: GF(2)^(1 x 4) # Cohomology dimension at degree 3: GF(2)^(1 x 5) # Cohomology dimension at degree 4: GF(2)^(1 x 6) # Cohomology dimension at degree 5: GF(2)^(1 x 7) # Cohomology dimension at degree 6: GF(2)^(1 x 8) # Cohomology dimension at degree 7: GF(2)^(1 x 9) # Cohomology dimension at degree 8: GF(2)^(1 x 10) #---->>>> Z/4Z^(1 x 1) #---->>>> Z/4Z/< 2 > ^ 2 + Z/4Z^(1 x 1) #---->>>> Z/4Z/< 2 > ^ 4 #---->>>> Z/4Z/< 2 > ^ 5 #---->>>> Z/4Z/< 2 > ^ 6 #---->>>> Z/4Z/< 2 > ^ 7 #---->>>> Z/4Z/< 2 > ^ 8 #------------------------------------------------------------------------------------------------- # 1: 3 x 23 matrix with rank 2 and kernel dimension 1. Time: 0.000 sec. # 2: 23 x 131 matrix with rank 18 and kernel dimension 5. Time: 0.000 sec. # 3: 131 x 791 matrix with rank 109 and kernel dimension 22. Time: 0.004 sec. # 4: 791 x 5123 matrix with rank 677 and kernel dimension 114. Time: 0.268 sec. # 5: 5123 x 34583 matrix with rank 4440 and kernel dimension 683. Time: 13.261 sec. # 6: 34583 x 238211 matrix with rank 30136 and kernel dimension 4447. Time: 474.842 sec. # 7: 238211 x 1655831 matrix with rank 208067 and kernel dimension 30144. Time: 23681.316 sec. # Cohomology dimension at degree 0: GF(2)^(1 x 1) # Cohomology dimension at degree 1: GF(2)^(1 x 3) # Cohomology dimension at degree 2: GF(2)^(1 x 4) # Cohomology dimension at degree 3: GF(2)^(1 x 5) # Cohomology dimension at degree 4: GF(2)^(1 x 6) # Cohomology dimension at degree 5: GF(2)^(1 x 7) # Cohomology dimension at degree 6: GF(2)^(1 x 8) #Z #Z # 2 # 2 # 3 # 3 # 4 # 4 # 5 # 5