GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
<?xml version="1.0" encoding="UTF-8"?>12<!--34Varieties.xml ToricVarieties56Copyright (C) 2011-2012, Sebastian Gutsche, RWTH Aachen University78-->910<Chapter Label="AffineVariety">11<Heading>Affine toric varieties</Heading>1213<Section Label="AffineVariety:Category">14<Heading>Affine toric varieties: Category and Representations</Heading>1516<#Include Label="IsAffineToricVariety">1718</Section>1920<Section Label="AffineVariety:Properties">21<Heading>Affine toric varieties: Properties</Heading>2223Affine toric varieties have no additional properties. Remember that affine toric varieties are toric varieties,24so every property of a toric variety is a property of an affine toric variety.2526</Section>2728<Section Label="AffineVariety:Attributes">29<Heading>Affine toric varieties: Attributes</Heading>3031<#Include Label="CoordinateRing">32<#Include Label="ListOfVariablesOfCoordinateRing">33<#Include Label="MorphismFromCoordinateRingToCoordinateRingOfTorus">34<#Include Label="ConeOfVariety">3536</Section>3738<Section Label="AffineVariety:Methods">39<Heading>Affine toric varieties: Methods</Heading>4041<#Include Label="CoordinateRing2">42<#Include Label="ConeMethod">4344</Section>4546<Section Label="AffineVariety:Constructors">47<Heading>Affine toric varieties: Constructors</Heading>4849The constructors are the same as for toric varieties. Calling them with a cone will50result in an affine variety.5152</Section>5354<Section Label="AffineVariety:Examples">55<Heading>Affine toric Varieties: Examples</Heading>56<#Include Label="AffineSpaceExample">57</Section>5859<!-- ############################################################ -->6061</Chapter>6263