Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563501 views
1
2
6 Projective toric varieties
3
4
5
6.1 Projective toric varieties: Category and Representations
6
7
6.1-1 IsProjectiveToricVariety
8
9
IsProjectiveToricVariety( M )  Category
10
Returns: true or false
11
12
The GAP category of a projective toric variety.
13
14
15
6.2 Projective toric varieties: Properties
16
17
Projective toric varieties have no additional properties. Remember that
18
projective toric varieties are toric varieties, so every property of a toric
19
variety is a property of an projective toric variety.
20
21
22
6.3 Projective toric varieties: Attributes
23
24
6.3-1 AffineCone
25
26
AffineCone( vari )  attribute
27
Returns: a variety
28
29
Returns the affine cone of the projective toric variety vari.
30
31
6.3-2 PolytopeOfVariety
32
33
PolytopeOfVariety( vari )  attribute
34
Returns: a polytope
35
36
Returns the polytope corresponding to the projective toric variety vari, if
37
it exists.
38
39
6.3-3 ProjectiveEmbedding
40
41
ProjectiveEmbedding( vari )  attribute
42
Returns: a list
43
44
Returns characters for a closed embedding in an projective space for the
45
projective toric variety vari.
46
47
48
6.4 Projective toric varieties: Methods
49
50
6.4-1 Polytope
51
52
Polytope( vari )  operation
53
Returns: a polytope
54
55
Returns the polytope of the variety vari. Another name for PolytopeOfVariety
56
for compatibility and shortness.
57
58
59
6.5 Projective toric varieties: Constructors
60
61
The constructors are the same as for toric varieties. Calling them with a
62
polytope will result in an projective variety.
63
64
65
6.6 Projective toric varieties: Examples
66
67
68
6.6-1 PxP1 created by a polytope
69
70
 Example 
71
gap> P1P1 := Polytope( [[1,1],[1,-1],[-1,-1],[-1,1]] );
72
<A polytope in |R^2>
73
gap> P1P1 := ToricVariety( P1P1 );
74
<A projective toric variety of dimension 2>
75
gap> IsProjective( P1P1 );
76
true
77
gap> IsComplete( P1P1 );
78
true 
79
gap> CoordinateRingOfTorus( P1P1, "x" );
80
Q[x1,x1_,x2,x2_]/( x2*x2_-1, x1*x1_-1 )
81
gap> IsVeryAmple( Polytope( P1P1 ) );
82
true
83
gap> ProjectiveEmbedding( P1P1 );
84
[ |[ x1_*x2_ ]|, |[ x1_ ]|, |[ x1_*x2 ]|, |[ x2_ ]|,
85
|[ 1 ]|, |[ x2 ]|, |[ x1*x2_ ]|, |[ x1 ]|, |[ x1*x2 ]| ]
86
gap> Length( last );
87
9
88

89
90
91