GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
1[1X6 [33X[0;0YProjective toric varieties[133X[101X234[1X6.1 [33X[0;0YProjective toric varieties: Category and Representations[133X[101X56[1X6.1-1 IsProjectiveToricVariety[101X78[29X[2XIsProjectiveToricVariety[102X( [3XM[103X ) [32X Category9[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X1011[33X[0;0YThe [5XGAP[105X category of a projective toric variety.[133X121314[1X6.2 [33X[0;0YProjective toric varieties: Properties[133X[101X1516[33X[0;0YProjective toric varieties have no additional properties. Remember that17projective toric varieties are toric varieties, so every property of a toric18variety is a property of an projective toric variety.[133X192021[1X6.3 [33X[0;0YProjective toric varieties: Attributes[133X[101X2223[1X6.3-1 AffineCone[101X2425[29X[2XAffineCone[102X( [3Xvari[103X ) [32X attribute26[6XReturns:[106X [33X[0;10Ya variety[133X2728[33X[0;0YReturns the affine cone of the projective toric variety [3Xvari[103X.[133X2930[1X6.3-2 PolytopeOfVariety[101X3132[29X[2XPolytopeOfVariety[102X( [3Xvari[103X ) [32X attribute33[6XReturns:[106X [33X[0;10Ya polytope[133X3435[33X[0;0YReturns the polytope corresponding to the projective toric variety [3Xvari[103X, if36it exists.[133X3738[1X6.3-3 ProjectiveEmbedding[101X3940[29X[2XProjectiveEmbedding[102X( [3Xvari[103X ) [32X attribute41[6XReturns:[106X [33X[0;10Ya list[133X4243[33X[0;0YReturns characters for a closed embedding in an projective space for the44projective toric variety [3Xvari[103X.[133X454647[1X6.4 [33X[0;0YProjective toric varieties: Methods[133X[101X4849[1X6.4-1 Polytope[101X5051[29X[2XPolytope[102X( [3Xvari[103X ) [32X operation52[6XReturns:[106X [33X[0;10Ya polytope[133X5354[33X[0;0YReturns the polytope of the variety [3Xvari[103X. Another name for PolytopeOfVariety55for compatibility and shortness.[133X565758[1X6.5 [33X[0;0YProjective toric varieties: Constructors[133X[101X5960[33X[0;0YThe constructors are the same as for toric varieties. Calling them with a61polytope will result in an projective variety.[133X626364[1X6.6 [33X[0;0YProjective toric varieties: Examples[133X[101X656667[1X6.6-1 [33X[0;0YPxP1 created by a polytope[133X[101X6869[4X[32X Example [32X[104X70[4X[25Xgap>[125X [27XP1P1 := Polytope( [[1,1],[1,-1],[-1,-1],[-1,1]] );[127X[104X71[4X[28X<A polytope in |R^2>[128X[104X72[4X[25Xgap>[125X [27XP1P1 := ToricVariety( P1P1 );[127X[104X73[4X[28X<A projective toric variety of dimension 2>[128X[104X74[4X[25Xgap>[125X [27XIsProjective( P1P1 );[127X[104X75[4X[28Xtrue[128X[104X76[4X[25Xgap>[125X [27XIsComplete( P1P1 );[127X[104X77[4X[28Xtrue [128X[104X78[4X[25Xgap>[125X [27XCoordinateRingOfTorus( P1P1, "x" );[127X[104X79[4X[28XQ[x1,x1_,x2,x2_]/( x2*x2_-1, x1*x1_-1 )[128X[104X80[4X[25Xgap>[125X [27XIsVeryAmple( Polytope( P1P1 ) );[127X[104X81[4X[28Xtrue[128X[104X82[4X[25Xgap>[125X [27XProjectiveEmbedding( P1P1 );[127X[104X83[4X[28X[ |[ x1_*x2_ ]|, |[ x1_ ]|, |[ x1_*x2 ]|, |[ x2_ ]|,[128X[104X84[4X[28X|[ 1 ]|, |[ x2 ]|, |[ x1*x2_ ]|, |[ x1 ]|, |[ x1*x2 ]| ][128X[104X85[4X[25Xgap>[125X [27XLength( last );[127X[104X86[4X[28X9[128X[104X87[4X[32X[104X88899091