GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
############################################################################# ## #W pcpgrp4.gi Karel Dekimpe #W Bettina Eick ## ## This file contains the 4-dimensional almost crystallographic groups ## as pcp groups. There are 95 types of groups. ## ACPcpGroupDim4Nr001 := function (k1, k2, k3) local FTL; FTL := FromTheLeftCollector( 4 ); SetConjugate( FTL, 2, 1, [2,1, 4,k1 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,k2 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,k3 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr002 := function (k1, k2, k3 , k4, k5, k6, k7) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k7 ] ); SetConjugate( FTL, 2, 1, [2,-1, 3,0, 4,0, 5,k4 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,-1, 4,0, 5,k5 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,-1, 5,k6 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,k2 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,k3 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr003 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,-1, 3,0, 4,0, 5,k2 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,1, 4,0, 5,0 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,-1, 5,k3 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,0 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr004 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,1, 4,0, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,-1, 3,0, 4,0, 5,k2 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,1, 4,0, 5,0 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,-1, 5,k3 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,0 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr004b:= function (k1, k2, k3 ) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,1, 4,0, 5,k3 ] ); SetConjugate( FTL, 2, 1, [2,-1, 3,0, 4,0, 5,k1 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,1, 4,0, 5,2*k3 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,-1, 5,-k2 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,-1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,2*k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,2*k2 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr005 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,0, 3,-1, 4,0, 5,k2 ] ); SetConjugate( FTL, 3, 1, [2,-1, 3,0, 4,0, 5,k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,-1, 5,k3 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,0 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr006 := function (k1, k2, k3 ) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k3 ] ); SetConjugate( FTL, 2, 1, [2,1, 3,0, 4,0, 5,0 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,-1, 4,0, 5,k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,0 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,0 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr007 := function (k1, k2, k3 ) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,0, 4,1, 5,k3 ] ); SetConjugate( FTL, 2, 1, [2,1, 3,0, 4,0, 5,-k1 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,-1, 4,0, 5,k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,0 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,0 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,2*k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr007b:= function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,0, 4,1, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,1, 3,0, 4,0, 5,-k3 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,-1, 4,0, 5,k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,2*k4 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,-1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,2*k2 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr008 := function (k1, k2, k3) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k3 ] ); SetConjugate( FTL, 2, 1, [2,0, 3,1, 4,0, 5,k2 ] ); SetConjugate( FTL, 3, 1, [2,1, 3,0, 4,0, 5,-k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,0 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,0 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr009 := function (k1, k2, k3) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,0, 4,1, 5,k3 ] ); SetConjugate( FTL, 2, 1, [2,0, 3,1, 4,0, 5,-k1 + k2 ] ); SetConjugate( FTL, 3, 1, [2,1, 3,0, 4,0, 5,-k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,0 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,0 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr009b:= function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,0, 4,1, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,0, 3,1, 4,0, 5,k2 - k3 ] ); SetConjugate( FTL, 3, 1, [2,1, 3,0, 4,0, 5,-k3 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,2*k4 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,-1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,k2 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,-k2 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr010 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k6 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,0, 5,0, 6,0 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,k5 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,k3 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,-1, 6,k3 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr011 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,-1, 5,0, 6,-k6 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-2*k6 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,k3 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,1, 5,0, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,-1, 6,k3 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr012 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k6 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,0, 5,0, 6,0 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k5 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,2*k2 - k5 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,k3 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,0, 4,-1, 5,0, 6,k2 ] ); SetConjugate( FTL, 4, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,-1, 6,k3 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr013 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,0, 5,1, 6,k6 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k1 + k2 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,k4 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,-2*k6 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,-1, 6,-2*k6 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,2*k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr014 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,-1, 5,1, 6,-k3 - k6 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k1 + k2 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-k3 - 2*k6 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,k3 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,1, 5,0, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,-1, 6,k3 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,2*k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr014b:= function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,-1, 5,1, 6,-k2 - 2*k3 + 2*k5 - k6 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,k2 - 2*k3 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,k2 + 2*k3 - 2*k5 + 2*k6 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,1, 5,0, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k1 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,1, 5,0, 6,2*k3 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,-1, 6,-k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,-1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,2*k2 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr015 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,0, 5,1, 6,k6 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,k1 + 2*k2 - k4 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,-2*k6 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,0, 4,-1, 5,0, 6,k2 ] ); SetConjugate( FTL, 4, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,-1, 6,-2*k6 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr018 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,1, 5,0, 6,k3 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,1, 4,1, 5,0, 6,k1 - 2*k2 + 2*k3 - k4 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k1 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,1, 5,0, 6,2*k3 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,0 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,-k1 + 2*k2 - 2*k3 + 2*k4 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,k1 - 2*k3 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr019 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,1, 5,0, 6,k3 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,1, 4,1, 5,-1, 6,-3*k1 - 2*k2 + 2*k3 - k4 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,3*k1 + 2*k2 - 2*k3 + 2*k4 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,-k1 - 2*k2 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k1 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,2*k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,-1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,2*k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr019b:= function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,1, 5,0, 6,k3 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,1, 4,1, 5,-1, 6,k1 - 2*k2 + 2*k3 - k4 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k1 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,1, 5,0, 6,2*k3 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,0 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,-k1 + 2*k2 - 2*k3 + 2*k4 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,k1 - 2*k3 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr019c:= function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,1, 5,0, 6,k3 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,1, 4,1, 5,-1, 6,-2*k2 + 2*k3 + k4 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,0 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,1, 5,0, 6,2*k3 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,-k1 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,0 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,2*k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,-1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,2*k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr026 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,0 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,k3 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k1 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,2*k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,-1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,2*k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr027 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,1, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,0, 5,0, 6,-k4 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,-k2 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,2*k5 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,k3 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr029 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,1, 6,k3 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,1, 5,0, 6,-2*k2 + 2*k3 - k4 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,-k1 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,2*(k2 - k3 + k4) ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k1 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,2*k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,-1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,2*k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr029b:= function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,1, 6,k4 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,1, 5,0, 6,-2*k3 + 2*k4 - k5 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,-k1 - k2 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,2*k4 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,2*(k3 - k4 + k5) ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr029c:= function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,1, 6,k1 + k2 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,1, 5,0, 6,-4*k1 + k4 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,-k3 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,2*(k1 + k2) ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,0 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,2*k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,-1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,4*k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr030 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,1, 6,k4 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,1, 5,0, 6,-2*k3 - k5 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,-k1 - k2 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,2*k4 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,2*(k3 + k5) ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr031 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,1, 5,0, 6,2*k3 - k4 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,0 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-2*(k3 - k4) ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k1 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,2*k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,-1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,2*k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr032 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,1, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,1, 4,1, 5,0, 6,3*k1 - 2*k2 + 2*k4 - k5 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,2*k4 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-k1 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,-k3 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,-k1 - 2*k4 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,-3*k1 + 2*k2 - 2*k4 + 2*k5 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr033 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,1, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,1, 4,1, 5,0, 6,2*k3 - k4 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,0 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-k1 - 2*k3 + 2*k4 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,k1 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k1 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,2*k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,-1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,2*k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr033b:= function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,1, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,1, 4,1, 5,0, 6,3*k1 - 2*k2 - k3 + 2*k4 - k5 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,2*k4 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-k1 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,-k3 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,-k1 - 2*k4 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,-3*k1 + 2*k2 + k3 - 2*k4 + 2*k5 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr033c:= function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,1, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,1, 4,1, 5,0, 6,-k1 + 2*k3 + k4 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,2*k3 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,k1 + 2*k2 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,0 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,2*k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,-1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,2*k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr034 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,1, 4,0, 5,1, 6,k4 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,1, 4,1, 5,0, 6,2*k1 - k2 - 2*k3 - k5 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,-k1 - k2 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-k1 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,k1 + k2 + 2*k4 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,-2*k1 + k2 + 2*k3 + 2*k5 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr036 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 3, 1, [3,0, 4,1, 5,0, 6,k3 ] ); SetConjugate( FTL, 4, 1, [3,1, 4,0, 5,0, 6,-k3 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k1 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,2*k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,-1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,2*k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,2*k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr037 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,1, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,0, 5,0, 6,-k3 ] ); SetConjugate( FTL, 3, 1, [3,0, 4,1, 5,0, 6,-k4 ] ); SetConjugate( FTL, 4, 1, [3,1, 4,0, 5,0, 6,-k4 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,2*k5 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,-k2 + 2*k4 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr041 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,1, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,1, 4,1, 5,1, 6,k1 - k2 - k3 + k5 ] ); SetConjugate( FTL, 3, 1, [3,0, 4,-1, 5,0, 6,2*k1 - k4 ] ); SetConjugate( FTL, 4, 1, [3,-1, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,2*k5 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,0, 4,-1, 5,0, 6,k2 ] ); SetConjugate( FTL, 4, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,-1, 6,2*(k1 - k5) ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,2*k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,2*k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr043 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,1, 5,0, 6,k4 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,0, 5,1, 6,-k2 - 2*k3 - k5 ] ); SetConjugate( FTL, 3, 1, [3,0, 4,1, 5,-1, 6,k1 + k2 + 2*k4 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,1, 5,0, 6,2*k4 ] ); SetConjugate( FTL, 5, 1, [3,-1, 4,1, 5,0, 6,-k2 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,0, 4,1, 5,-1, 6,k2 + 2*k3 + 2*k5 ] ); SetConjugate( FTL, 4, 2, [3,1, 4,0, 5,-1, 6,k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,-1, 6,2*(k2 + k3 + k5) ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,-k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr045 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,1, 4,1, 5,0, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,0, 5,0, 6,-k3 ] ); SetConjugate( FTL, 3, 1, [3,0, 4,0, 5,-1, 6,-k4 ] ); SetConjugate( FTL, 4, 1, [3,1, 4,1, 5,1, 6,k4 + 2*k5 ] ); SetConjugate( FTL, 5, 1, [3,-1, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,0, 4,1, 5,0, 6,k2 ] ); SetConjugate( FTL, 4, 2, [3,1, 4,0, 5,0, 6,-k2 ] ); SetConjugate( FTL, 5, 2, [3,-1, 4,-1, 5,-1, 6,k2 - 2*k4 - 2*k5 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,-k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr055 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 7 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [4,0, 5,0, 6,0, 7,2*k1 + k2 + k4 + k6 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 4,1, 5,-1, 6,0, 7,k1 + 2*k2 - 2*k3 + 2*k4 + k6 ] ); SetConjugate( FTL, 3, 1, [3, 1 , 4,0, 5,0, 6,0, 7,0 ] ); SetConjugate( FTL, 4, 1, [4,-1, 5,0, 6,0, 7,-k1 - 2*k2 + 2*k3 - 2*k4 ] ); SetConjugate( FTL, 5, 1, [4,0, 5,-1, 6,0, 7,-k1 - 2*k3 ] ); SetConjugate( FTL, 6, 1, [4,0, 5,0, 6,-1, 7,k5 ] ); SetConjugate( FTL, 7, 1, [4,0, 5,0, 6,0, 7,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [4,0, 5,1, 6,0, 7,k3 ] ); SetConjugate( FTL, 3, 2, [ 3, 1, 4,-1, 5,1, 6,0, 7,-k1 - 2*k2 + 2*k3 - k4 ] ); SetConjugate( FTL, 4, 2, [4,-1, 5,0, 6,0, 7,k1 ] ); SetConjugate( FTL, 5, 2, [4,0, 5,1, 6,0, 7,2*k3 ] ); SetConjugate( FTL, 6, 2, [4,0, 5,0, 6,-1, 7,0 ] ); SetConjugate( FTL, 7, 2, [4,0, 5,0, 6,0, 7,-1 ] ); SetRelativeOrder( FTL, 3, 2 ); SetPower( FTL, 3, [4,0, 5,0, 6,0, 7,k2 ] ); SetConjugate( FTL, 4, 3, [4,-1, 5,0, 6,0, 7,-k1 - 2*k2 + 2*k3 - 2*k4 ] ); SetConjugate( FTL, 5, 3, [4,0, 5,-1, 6,0, 7,-k1 - 2*k3 ] ); SetConjugate( FTL, 6, 3, [4,0, 5,0, 6,1, 7,0 ] ); SetConjugate( FTL, 7, 3, [4,0, 5,0, 6,0, 7,1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0, 7,2*k1 ] ); SetConjugate( FTL, 6, 4, [6,1, 7,0 ] ); SetConjugate( FTL, 6, 5, [6,1, 7,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr056 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 7 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [4,0, 5,0, 6,0, 7,k6 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 4,0, 5,-1, 6,1, 7,-2*k3 - k5 + 2*k6 ] ); SetConjugate( FTL, 3, 1, [3, 1 , 4,1, 5,1, 6,0, 7,k4 ] ); SetConjugate( FTL, 4, 1, [4,-1, 5,0, 6,0, 7,2*(k1 + k3 - k4) ] ); SetConjugate( FTL, 5, 1, [4,0, 5,-1, 6,0, 7,-2*k3 ] ); SetConjugate( FTL, 6, 1, [4,0, 5,0, 6,-1, 7,2*(k3 + k5 - k6) ] ); SetConjugate( FTL, 7, 1, [4,0, 5,0, 6,0, 7,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [4,0, 5,1, 6,0, 7,k3 ] ); SetConjugate( FTL, 3, 2, [ 3, 1, 4,1, 5,1, 6,0, 7,-k2 + k4 ] ); SetConjugate( FTL, 4, 2, [4,-1, 5,0, 6,0, 7,k1 ] ); SetConjugate( FTL, 5, 2, [4,0, 5,1, 6,0, 7,2*k3 ] ); SetConjugate( FTL, 6, 2, [4,0, 5,0, 6,-1, 7,0 ] ); SetConjugate( FTL, 7, 2, [4,0, 5,0, 6,0, 7,-1 ] ); SetRelativeOrder( FTL, 3, 2 ); SetPower( FTL, 3, [4,0, 5,0, 6,0, 7,k2 ] ); SetConjugate( FTL, 4, 3, [4,-1, 5,0, 6,0, 7,k1 + 2*k3 - 2*k4 ] ); SetConjugate( FTL, 5, 3, [4,0, 5,-1, 6,0, 7,k1 - 2*k3 ] ); SetConjugate( FTL, 6, 3, [4,0, 5,0, 6,1, 7,0 ] ); SetConjugate( FTL, 7, 3, [4,0, 5,0, 6,0, 7,1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0, 7,2*k1 ] ); SetConjugate( FTL, 6, 4, [6,1, 7,0 ] ); SetConjugate( FTL, 6, 5, [6,1, 7,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr058 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 7 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [4,0, 5,0, 6,0, 7,k6 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 4,1, 5,-1, 6,1, 7,-3*k1 - 2*k3 - k5 + 2*k6 ] ); SetConjugate( FTL, 3, 1, [3, 1 , 4,0, 5,0, 6,0, 7,0 ] ); SetConjugate( FTL, 4, 1, [4,-1, 5,0, 6,0, 7,-k1 - 2*k2 + 2*k3 - 2*k4 ] ); SetConjugate( FTL, 5, 1, [4,0, 5,-1, 6,0, 7,-k1 - 2*k3 ] ); SetConjugate( FTL, 6, 1, [4,0, 5,0, 6,-1, 7,2*(2*k1 + k2 + k4 + k5 - k6) ] ); SetConjugate( FTL, 7, 1, [4,0, 5,0, 6,0, 7,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [4,0, 5,1, 6,0, 7,k3 ] ); SetConjugate( FTL, 3, 2, [ 3, 1, 4,-1, 5,1, 6,0, 7,-k1 - 2*k2 + 2*k3 - k4 ] ); SetConjugate( FTL, 4, 2, [4,-1, 5,0, 6,0, 7,k1 ] ); SetConjugate( FTL, 5, 2, [4,0, 5,1, 6,0, 7,2*k3 ] ); SetConjugate( FTL, 6, 2, [4,0, 5,0, 6,-1, 7,0 ] ); SetConjugate( FTL, 7, 2, [4,0, 5,0, 6,0, 7,-1 ] ); SetRelativeOrder( FTL, 3, 2 ); SetPower( FTL, 3, [4,0, 5,0, 6,0, 7,k2 ] ); SetConjugate( FTL, 4, 3, [4,-1, 5,0, 6,0, 7,-k1 - 2*k2 + 2*k3 - 2*k4 ] ); SetConjugate( FTL, 5, 3, [4,0, 5,-1, 6,0, 7,-k1 - 2*k3 ] ); SetConjugate( FTL, 6, 3, [4,0, 5,0, 6,1, 7,0 ] ); SetConjugate( FTL, 7, 3, [4,0, 5,0, 6,0, 7,1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0, 7,2*k1 ] ); SetConjugate( FTL, 6, 4, [6,1, 7,0 ] ); SetConjugate( FTL, 6, 5, [6,1, 7,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr060 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 7 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [4,0, 5,0, 6,0, 7,k6 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 4,0, 5,-1, 6,1, 7,-2*k3 - k5 + 2*k6 ] ); SetConjugate( FTL, 3, 1, [3, 1 , 4,1, 5,0, 6,0, 7,k1 - k2 + k3 - k4 ] ); SetConjugate( FTL, 4, 1, [4,-1, 5,0, 6,0, 7,-2*(k1 - k2 + k3 - k4) ] ); SetConjugate( FTL, 5, 1, [4,0, 5,-1, 6,0, 7,-2*k3 ] ); SetConjugate( FTL, 6, 1, [4,0, 5,0, 6,-1, 7,2*(k3 + k5 - k6) ] ); SetConjugate( FTL, 7, 1, [4,0, 5,0, 6,0, 7,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [4,0, 5,1, 6,0, 7,k3 ] ); SetConjugate( FTL, 3, 2, [ 3, 1, 4,1, 5,1, 6,0, 7,2*k1 - 2*k2 + 2*k3 - k4 ] ); SetConjugate( FTL, 4, 2, [4,-1, 5,0, 6,0, 7,2*k1 ] ); SetConjugate( FTL, 5, 2, [4,0, 5,1, 6,0, 7,2*k3 ] ); SetConjugate( FTL, 6, 2, [4,0, 5,0, 6,-1, 7,0 ] ); SetConjugate( FTL, 7, 2, [4,0, 5,0, 6,0, 7,-1 ] ); SetRelativeOrder( FTL, 3, 2 ); SetPower( FTL, 3, [4,0, 5,0, 6,0, 7,k2 ] ); SetConjugate( FTL, 4, 3, [4,-1, 5,0, 6,0, 7,-2*(k1 - k2 + k3 - k4) ] ); SetConjugate( FTL, 5, 3, [4,0, 5,-1, 6,0, 7,2*(k1 - k3) ] ); SetConjugate( FTL, 6, 3, [4,0, 5,0, 6,1, 7,0 ] ); SetConjugate( FTL, 7, 3, [4,0, 5,0, 6,0, 7,1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0, 7,4*k1 ] ); SetConjugate( FTL, 6, 4, [6,1, 7,0 ] ); SetConjugate( FTL, 6, 5, [6,1, 7,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr061 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 7 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [4,0, 5,0, 6,0, 7,-k1 + k3 - k4 + k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 4,0, 5,-1, 6,1, 7,2*k1 + 2*k2 - k6 ] ); SetConjugate( FTL, 3, 1, [3, 1 , 4,1, 5,0, 6,-1, 7,-8*k1 - 2*k2 + 2*k3 - 2*k4 + k5 ] ); SetConjugate( FTL, 4, 1, [4,-1, 5,0, 6,0, 7,2*(4*k1 + k2 - k3 + k4) ] ); SetConjugate( FTL, 5, 1, [4,0, 5,-1, 6,0, 7,2*(k1 + k2 - k6) ] ); SetConjugate( FTL, 6, 1, [4,0, 5,0, 6,-1, 7,-2*(k1 + k2) ] ); SetConjugate( FTL, 7, 1, [4,0, 5,0, 6,0, 7,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [4,0, 5,1, 6,0, 7,k3 ] ); SetConjugate( FTL, 3, 2, [ 3, 1, 4,1, 5,1, 6,-1, 7,-6*k1 - 2*k2 + 2*k3 - k4 ] ); SetConjugate( FTL, 4, 2, [4,-1, 5,0, 6,0, 7,2*(3*k1 + k2 - k3 + k4) ] ); SetConjugate( FTL, 5, 2, [4,0, 5,1, 6,0, 7,0 ] ); SetConjugate( FTL, 6, 2, [4,0, 5,0, 6,-1, 7,-2*(k1 + k2) ] ); SetConjugate( FTL, 7, 2, [4,0, 5,0, 6,0, 7,1 ] ); SetRelativeOrder( FTL, 3, 2 ); SetPower( FTL, 3, [4,0, 5,0, 6,1, 7,k2 ] ); SetConjugate( FTL, 4, 3, [4,-1, 5,0, 6,0, 7,2*k1 ] ); SetConjugate( FTL, 5, 3, [4,0, 5,-1, 6,0, 7,0 ] ); SetConjugate( FTL, 6, 3, [4,0, 5,0, 6,1, 7,2*k2 ] ); SetConjugate( FTL, 7, 3, [4,0, 5,0, 6,0, 7,-1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0, 7,0 ] ); SetConjugate( FTL, 6, 4, [6,1, 7,4*k1 ] ); SetConjugate( FTL, 6, 5, [6,1, 7,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr061b := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 7 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [4,0, 5,0, 6,0, 7,-k1 + k2 + k4 + k5 + k6 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 4,0, 5,-1, 6,1, 7,-2*k1 + 2*k2 - 2*k3 + 2*k4 + 2*k5 + k6 ] ); SetConjugate( FTL, 3, 1, [3, 1 , 4,1, 5,0, 6,-1, 7,2*k1 - 2*k2 + 2*k3 - 2*k4 - k5 ] ); SetConjugate( FTL, 4, 1, [4,-1, 5,0, 6,0, 7,-2*(k1 - k2 + k3 - k4) ] ); SetConjugate( FTL, 5, 1, [4,0, 5,-1, 6,0, 7,-2*k3 ] ); SetConjugate( FTL, 6, 1, [4,0, 5,0, 6,-1, 7,2*(k1 - k2 + k3 - k4 - k5) ] ); SetConjugate( FTL, 7, 1, [4,0, 5,0, 6,0, 7,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [4,0, 5,1, 6,0, 7,k3 ] ); SetConjugate( FTL, 3, 2, [ 3, 1, 4,1, 5,1, 6,-1, 7,2*k1 - 2*k2 + 2*k3 - k4 ] ); SetConjugate( FTL, 4, 2, [4,-1, 5,0, 6,0, 7,2*k1 ] ); SetConjugate( FTL, 5, 2, [4,0, 5,1, 6,0, 7,2*k3 ] ); SetConjugate( FTL, 6, 2, [4,0, 5,0, 6,-1, 7,0 ] ); SetConjugate( FTL, 7, 2, [4,0, 5,0, 6,0, 7,-1 ] ); SetRelativeOrder( FTL, 3, 2 ); SetPower( FTL, 3, [4,0, 5,0, 6,1, 7,k2 ] ); SetConjugate( FTL, 4, 3, [4,-1, 5,0, 6,0, 7,-2*(k1 - k2 + k3 - k4) ] ); SetConjugate( FTL, 5, 3, [4,0, 5,-1, 6,0, 7,2*(k1 - k3) ] ); SetConjugate( FTL, 6, 3, [4,0, 5,0, 6,1, 7,0 ] ); SetConjugate( FTL, 7, 3, [4,0, 5,0, 6,0, 7,1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0, 7,4*k1 ] ); SetConjugate( FTL, 6, 4, [6,1, 7,0 ] ); SetConjugate( FTL, 6, 5, [6,1, 7,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr061c:= function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 7 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [4,0, 5,0, 6,0, 7,k1 + k2 + k3 + k6 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 4,0, 5,-1, 6,1, 7,2*k2 + k6 ] ); SetConjugate( FTL, 3, 1, [3, 1 , 4,1, 5,0, 6,-1, 7,2*k1 + 2*k3 - k5 + 2*k6 ] ); SetConjugate( FTL, 4, 1, [4,-1, 5,0, 6,0, 7,-2*(k1 + k3 - k5 + k6) ] ); SetConjugate( FTL, 5, 1, [4,0, 5,-1, 6,0, 7,2*(k1 - k3) ] ); SetConjugate( FTL, 6, 1, [4,0, 5,0, 6,-1, 7,-2*k2 ] ); SetConjugate( FTL, 7, 1, [4,0, 5,0, 6,0, 7,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [4,0, 5,1, 6,0, 7,k3 ] ); SetConjugate( FTL, 3, 2, [ 3, 1, 4,1, 5,1, 6,-1, 7,-2*k2 + 2*k3 + k4 ] ); SetConjugate( FTL, 4, 2, [4,-1, 5,0, 6,0, 7,0 ] ); SetConjugate( FTL, 5, 2, [4,0, 5,1, 6,0, 7,2*k3 ] ); SetConjugate( FTL, 6, 2, [4,0, 5,0, 6,-1, 7,-2*k1 ] ); SetConjugate( FTL, 7, 2, [4,0, 5,0, 6,0, 7,-1 ] ); SetRelativeOrder( FTL, 3, 2 ); SetPower( FTL, 3, [4,0, 5,0, 6,1, 7,k2 ] ); SetConjugate( FTL, 4, 3, [4,-1, 5,0, 6,0, 7,0 ] ); SetConjugate( FTL, 5, 3, [4,0, 5,-1, 6,0, 7,2*k1 ] ); SetConjugate( FTL, 6, 3, [4,0, 5,0, 6,1, 7,2*k2 ] ); SetConjugate( FTL, 7, 3, [4,0, 5,0, 6,0, 7,-1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0, 7,0 ] ); SetConjugate( FTL, 6, 4, [6,1, 7,0 ] ); SetConjugate( FTL, 6, 5, [6,1, 7,4*k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr062 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 7 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [4,0, 5,0, 6,0, 7,k3 - k4 + k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 4,0, 5,-1, 6,0, 7,-k6 ] ); SetConjugate( FTL, 3, 1, [3, 1 , 4,1, 5,0, 6,-1, 7,-3*k1 - 2*k2 + 2*k3 - 2*k4 + k5 ] ); SetConjugate( FTL, 4, 1, [4,-1, 5,0, 6,0, 7,3*k1 + 2*k2 - 2*k3 + 2*k4 ] ); SetConjugate( FTL, 5, 1, [4,0, 5,-1, 6,0, 7,-2*k6 ] ); SetConjugate( FTL, 6, 1, [4,0, 5,0, 6,-1, 7,-k1 - 2*k2 ] ); SetConjugate( FTL, 7, 1, [4,0, 5,0, 6,0, 7,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [4,0, 5,1, 6,0, 7,k3 ] ); SetConjugate( FTL, 3, 2, [ 3, 1, 4,1, 5,1, 6,-1, 7,-3*k1 - 2*k2 + 2*k3 - k4 ] ); SetConjugate( FTL, 4, 2, [4,-1, 5,0, 6,0, 7,3*k1 + 2*k2 - 2*k3 + 2*k4 ] ); SetConjugate( FTL, 5, 2, [4,0, 5,1, 6,0, 7,0 ] ); SetConjugate( FTL, 6, 2, [4,0, 5,0, 6,-1, 7,-k1 - 2*k2 ] ); SetConjugate( FTL, 7, 2, [4,0, 5,0, 6,0, 7,1 ] ); SetRelativeOrder( FTL, 3, 2 ); SetPower( FTL, 3, [4,0, 5,0, 6,1, 7,k2 ] ); SetConjugate( FTL, 4, 3, [4,-1, 5,0, 6,0, 7,k1 ] ); SetConjugate( FTL, 5, 3, [4,0, 5,-1, 6,0, 7,0 ] ); SetConjugate( FTL, 6, 3, [4,0, 5,0, 6,1, 7,2*k2 ] ); SetConjugate( FTL, 7, 3, [4,0, 5,0, 6,0, 7,-1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0, 7,0 ] ); SetConjugate( FTL, 6, 4, [6,1, 7,2*k1 ] ); SetConjugate( FTL, 6, 5, [6,1, 7,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr075 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 4 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,0, 3,-1, 4,0, 5,k3 ] ); SetConjugate( FTL, 3, 1, [2,1, 3,0, 4,0, 5,-k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,0 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr076 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 4 ); SetPower( FTL, 1, [2,0, 3,0, 4,1, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,0, 3,-1, 4,0, 5,k3 ] ); SetConjugate( FTL, 3, 1, [2,1, 3,0, 4,0, 5,-k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,0 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr077 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 4 ); SetPower( FTL, 1, [2,0, 3,0, 4,2, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,0, 3,-1, 4,0, 5,k3 ] ); SetConjugate( FTL, 3, 1, [2,1, 3,0, 4,0, 5,-k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,0 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr079 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 4 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,1, 3,1, 4,1, 5,-k3 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,0, 4,-1, 5,k3 ] ); SetConjugate( FTL, 4, 1, [2,-1, 3,0, 4,0, 5,k2 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,0 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,-k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr080 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 4 ); SetPower( FTL, 1, [2,1, 3,1, 4,0, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,1, 3,1, 4,1, 5,-k3 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,0, 4,-1, 5,k3 ] ); SetConjugate( FTL, 4, 1, [2,-1, 3,0, 4,0, 5,k2 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,0 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,-k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr081 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 4 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k5 ] ); SetConjugate( FTL, 2, 1, [2,0, 3,1, 4,0, 5,-k3 ] ); SetConjugate( FTL, 3, 1, [2,-1, 3,0, 4,0, 5,k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,-1, 5,k4 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr082 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 4 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k5 ] ); SetConjugate( FTL, 2, 1, [2,-1, 3,-1, 4,-1, 5,k2 + k3 + k4 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,0, 4,1, 5,-k4 ] ); SetConjugate( FTL, 4, 1, [2,1, 3,0, 4,0, 5,-k2 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,0 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,-k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr083 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k6 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,0, 5,0, 6,0 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k2 + k3 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-k2 + k3 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,k5 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 4 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,0, 4,-1, 5,0, 6,k3 ] ); SetConjugate( FTL, 4, 2, [3,1, 4,0, 5,0, 6,-k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr084 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,0, 5,-1, 6,-k6 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k2 + k3 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-k2 + k3 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,-2*k6 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 4 ); SetPower( FTL, 2, [3,0, 4,0, 5,2, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,0, 4,-1, 5,0, 6,k3 ] ); SetConjugate( FTL, 4, 2, [3,1, 4,0, 5,0, 6,-k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr085 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,-1, 4,0, 5,0, 6,k2 - k6 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,2*(k2 - k6) ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-2*k6 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,k4 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 4 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,0, 4,-1, 5,0, 6,-k1 + k2 - 2*k6 ] ); SetConjugate( FTL, 4, 2, [3,1, 4,0, 5,0, 6,-k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr086 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,-1, 4,0, 5,-1, 6,k2 - k6 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k1 + k2 + k3 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,k1 - k2 + k3 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,-k1 + k2 - k3 - 2*k6 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 4 ); SetPower( FTL, 2, [3,0, 4,0, 5,2, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,0, 4,-1, 5,0, 6,k3 ] ); SetConjugate( FTL, 4, 2, [3,1, 4,0, 5,0, 6,-k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr087 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k6 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,0, 5,0, 6,0 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k5 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-2*k2 + 2*k3 + k5 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,2*k2 - k5 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 4 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,1, 5,1, 6,-k3 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,0, 5,-1, 6,k3 ] ); SetConjugate( FTL, 5, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,-k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr088 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,1, 4,0, 5,0, 6,-k2 - k6 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,2*(k2 + k6) ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-k1 + 2*k3 + 2*k6 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,-2*k6 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 4 ); SetPower( FTL, 2, [3,-1, 4,-1, 5,0, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,1, 5,1, 6,-k3 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,0, 5,-1, 6,k3 ] ); SetConjugate( FTL, 5, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,-k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr103 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,1, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 3 , 3,0, 4,0, 5,0, 6,-k4 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,-k2 - k3 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,2*k5 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 4 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,0, 4,-1, 5,0, 6,k3 ] ); SetConjugate( FTL, 4, 2, [3,1, 4,0, 5,0, 6,-k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr104 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,1, 4,0, 5,1, 6,k4 ] ); SetConjugate( FTL, 2, 1, [2, 3 , 3,1, 4,0, 5,0, 6,-k2 - 2*k3 - k5 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,-2*(k2 + k3 + k5) ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-k1 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,2*(k2 + k3 + k4 + k5) ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 4 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,0, 4,-1, 5,0, 6,-k1 + k2 + 2*k3 + 2*k5 ] ); SetConjugate( FTL, 4, 2, [3,1, 4,0, 5,0, 6,-k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr106 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,1, 4,0, 5,0, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 3 , 3,1, 4,0, 5,-1, 6,-k3 - k4 + k5 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,2*k5 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-k1 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,-2*k4 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 4 ); SetPower( FTL, 2, [3,0, 4,0, 5,2, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,0, 4,-1, 5,0, 6,-k1 - k2 - 2*k5 ] ); SetConjugate( FTL, 4, 2, [3,1, 4,0, 5,0, 6,-k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr110 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,1, 4,1, 5,0, 6,k1 - k2 - k4 ] ); SetConjugate( FTL, 2, 1, [2, 3 , 3,1, 4,1, 5,1, 6,-2*k1 + 2*k2 - 2*k3 + 2*k4 - k5 ] ); SetConjugate( FTL, 3, 1, [3,0, 4,0, 5,-1, 6,-k4 ] ); SetConjugate( FTL, 4, 1, [3,1, 4,1, 5,1, 6,2*k1 - 2*k2 - k4 ] ); SetConjugate( FTL, 5, 1, [3,-1, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 4 ); SetPower( FTL, 2, [3,-1, 4,-1, 5,0, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,1, 5,1, 6,-k2 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,0, 5,-1, 6,k2 ] ); SetConjugate( FTL, 5, 2, [3,-1, 4,0, 5,0, 6,4*k1 - 4*k2 + 2*k3 - 3*k4 + 2*k5 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,0 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,2*k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,-2*k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr114 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,1, 5,0, 6,k4 ] ); SetConjugate( FTL, 2, 1, [2, 3 , 3,0, 4,1, 5,1, 6,-k1 + k2 - 2*k3 + 2*k4 - k5 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k1 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,1, 5,0, 6,2*k4 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,0 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 4 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,0, 4,1, 5,0, 6,-k1 + k2 + 2*k4 ] ); SetConjugate( FTL, 4, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,-1, 6,2*(k1 - k2 + k3 - k4 + k5) ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr143 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 3 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,-1, 3,-1, 4,0, 5,k2 + k3 ] ); SetConjugate( FTL, 3, 1, [2,1, 3,0, 4,0, 5,-k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,0 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr144 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 3 ); SetPower( FTL, 1, [2,0, 3,0, 4,1, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,-1, 3,-1, 4,0, 5,k2 + k3 ] ); SetConjugate( FTL, 3, 1, [2,1, 3,0, 4,0, 5,-k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,0 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr146 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 3 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,0, 3,0, 4,1, 5,k2 + k3 ] ); SetConjugate( FTL, 3, 1, [2,1, 3,0, 4,0, 5,-k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,1, 4,0, 5,-k3 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,-k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr147 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 6 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k5 ] ); SetConjugate( FTL, 2, 1, [2,1, 3,1, 4,0, 5,k1 - k2 - k3 ] ); SetConjugate( FTL, 3, 1, [2,-1, 3,0, 4,0, 5,k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,-1, 5,k4 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr148 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 6 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k5 ] ); SetConjugate( FTL, 2, 1, [2,0, 3,0, 4,-1, 5,k4 ] ); SetConjugate( FTL, 3, 1, [2,-1, 3,0, 4,0, 5,k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,-1, 4,0, 5,k3 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,-k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr158 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,1, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 2 , 3,0, 4,0, 5,0, 6,-k4 ] ); SetConjugate( FTL, 3, 1, [3,0, 4,-1, 5,0, 6,-k2 ] ); SetConjugate( FTL, 4, 1, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,2*k5 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 3 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,-1, 5,0, 6,k2 + k3 ] ); SetConjugate( FTL, 4, 2, [3,1, 4,0, 5,0, 6,-k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr159 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,1, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 2 , 3,0, 4,0, 5,0, 6,-k3 ] ); SetConjugate( FTL, 3, 1, [3,0, 4,1, 5,0, 6,-k4 ] ); SetConjugate( FTL, 4, 1, [3,1, 4,0, 5,0, 6,-k4 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,2*k5 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 3 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,-1, 5,0, 6,k1 - k2 + 3*k4 ] ); SetConjugate( FTL, 4, 2, [3,1, 4,0, 5,0, 6,-k1 + 2*k2 - 3*k4 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr161 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,1, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 2 , 3,-1, 4,0, 5,0, 6,-k3 - k4 + 2*k5 ] ); SetConjugate( FTL, 3, 1, [3,0, 4,1, 5,0, 6,-k1 - k2 - 2*k3 + 2*k5 ] ); SetConjugate( FTL, 4, 1, [3,1, 4,0, 5,0, 6,-k2 - 2*k3 + 2*k5 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,2*k5 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 3 ); SetPower( FTL, 2, [3,1, 4,1, 5,1, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,0, 4,0, 5,1, 6,k2 + k3 ] ); SetConjugate( FTL, 4, 2, [3,1, 4,0, 5,0, 6,-k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,1, 5,0, 6,-k3 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,-k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr168 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 6 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,1, 3,1, 4,0, 5,k1 - k2 - k3 ] ); SetConjugate( FTL, 3, 1, [2,-1, 3,0, 4,0, 5,k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,0 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr169 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 6 ); SetPower( FTL, 1, [2,0, 3,0, 4,5, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,1, 3,1, 4,0, 5,k1 - k2 - k3 ] ); SetConjugate( FTL, 3, 1, [2,-1, 3,0, 4,0, 5,k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,0 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr172 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 6 ); SetPower( FTL, 1, [2,0, 3,0, 4,2, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,1, 3,1, 4,0, 5,k1 - k2 - k3 ] ); SetConjugate( FTL, 3, 1, [2,-1, 3,0, 4,0, 5,k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,0 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr173 := function (k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 6 ); SetPower( FTL, 1, [2,0, 3,0, 4,3, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,1, 3,1, 4,0, 5,k1 - k2 - k3 ] ); SetConjugate( FTL, 3, 1, [2,-1, 3,0, 4,0, 5,k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,0 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr174 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 6 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k5 ] ); SetConjugate( FTL, 2, 1, [2,-1, 3,-1, 4,0, 5,k2 + k3 ] ); SetConjugate( FTL, 3, 1, [2,1, 3,0, 4,0, 5,-k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,-1, 5,k4 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,0, 5,k1 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr175 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k6 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,0, 5,0, 6,0 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k1 - 2*k3 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-k1 + 2*k2 + 2*k3 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,k5 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 6 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,1, 5,0, 6,k1 - k2 - k3 ] ); SetConjugate( FTL, 4, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr176 := function (k1, k2, k3 , k4, k5, k6) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,0, 5,-1, 6,k6 ] ); SetConjugate( FTL, 3, 1, [3,-1, 4,0, 5,0, 6,k1 - 2*k3 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,-k1 + 2*k2 + 2*k3 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,2*k6 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 6 ); SetPower( FTL, 2, [3,0, 4,0, 5,3, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,1, 5,0, 6,k1 - k2 - k3 ] ); SetConjugate( FTL, 4, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4Nr184 := function (k1, k2, k3 , k4, k5) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,1, 6,k5 ] ); SetConjugate( FTL, 2, 1, [2, 5 , 3,0, 4,0, 5,0, 6,-k4 ] ); SetConjugate( FTL, 3, 1, [3,0, 4,-1, 5,0, 6,-k1 + k2 + 2*k3 ] ); SetConjugate( FTL, 4, 1, [3,-1, 4,0, 5,0, 6,k1 - k2 - 2*k3 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,1, 6,2*k5 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 6 ); SetPower( FTL, 2, [3,0, 4,0, 5,0, 6,k4 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,1, 5,0, 6,k1 - k2 - k3 ] ); SetConjugate( FTL, 4, 2, [3,-1, 4,0, 5,0, 6,k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,0 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4NrB1 := function (k , k1, k2 , k3) local FTL; FTL := FromTheLeftCollector( 4 ); SetConjugate( FTL, 2, 1, [2,1, 3, k, 4, k1 ] ); SetConjugate( FTL, 3, 1, [3,1, 4, k2 ] ); SetConjugate( FTL, 3, 2, [3,1, 4, k3 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4NrB2 := function (k, k1, k2, k3) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,0, 4,1, 5,k3 ] ); SetConjugate( FTL, 2, 1, [2,-1, 3,0, 4,0, 5,k1 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,-1, 4,0, 5,k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,1, 5,2*k3 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,-1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,2*k, 5,2*(k*k1 + k*k2 + k*k3) ] ); SetConjugate( FTL, 4, 2, [4,1, 5,2*k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,2*k2 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4NrB3c := function (l, k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,1, 3,0, 4,0, 5,0 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,-1, 4,0, 5,k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,-1, 5,k3 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,2*l, 5,(k1 - k3)*l ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4NrB3b := function (l, k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,1, 3,0, 4,-1, 5,-k2 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,-1, 4,0, 5,k3 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,-1, 5,-2*k2 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,2*l, 5,-k1 + 2*k1*l + 2*k2*l ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,2*k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4NrB3 := function (l, k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,1, 3,0, 4,-1, 5,-k2 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,-1, 4,0, 5,k3 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,-1, 5,-2*k2 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,1 + 2*l, 5,k2 + k1*l + 2*k2*l ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4NrB4 := function (k, k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,1, 3,0, 4,0, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,1, 3,0, 4,0, 5,0 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,-1, 4,-k, 5,k*k1 + k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,-1, 5,k3 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,2*k, 5,k*(k1 - k3) ] ); SetConjugate( FTL, 4, 2, [4,1, 5,0 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4NrB4b := function (k, k1, k2, k3) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,1, 3,0, 4,0, 5,k3 ] ); SetConjugate( FTL, 2, 1, [2,1, 3,0, 4,0, 5,2*k3 ] ); SetConjugate( FTL, 3, 1, [2,0, 3,-1, 4,-k, 5,k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,-1, 5,k1 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,-1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,2*k, 5,-(k*k1) - 2*k2 ] ); SetConjugate( FTL, 4, 2, [4,1, 5,-2*k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,0 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4NrB5 := function (l, k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,0, 3,1, 4,0, 5,k2 ] ); SetConjugate( FTL, 3, 1, [2,1, 3,0, 4,0, 5,-k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,-1, 5,k3 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,2*l, 5,-(k3*l) ] ); SetConjugate( FTL, 4, 2, [4,1, 5,k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,-k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4NrB5b := function (l, k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 5 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [2,0, 3,0, 4,0, 5,k4 ] ); SetConjugate( FTL, 2, 1, [2,0, 3,1, 4,0, 5,k2 ] ); SetConjugate( FTL, 3, 1, [2,1, 3,0, 4,0, 5,-k2 ] ); SetConjugate( FTL, 4, 1, [2,0, 3,0, 4,-1, 5,2*k3 ] ); SetConjugate( FTL, 5, 1, [2,0, 3,0, 4,0, 5,1 ] ); SetConjugate( FTL, 3, 2, [3,1, 4,1 + 2*l, 5,-(k3*(1 + 2*l)) ] ); SetConjugate( FTL, 4, 2, [4,1, 5,k1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,-k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4NrB7 := function (l, k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,-1, 5,-1, 6,2*k1 - 2*k2 + 2*k3 - k4 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,2*l, 6,-((k1 - 2*k2)*l) ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,k1 - 2*k2 + 2*k3 - 2*k4 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,k1 - 2*k2 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,0 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,k1 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,2*k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,-1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,4*l, 6,4*(k1*l + k2*l) ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,2*k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4NrB7b := function (l, k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,0, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,0, 4,-1, 5,-1, 6,4*k1 - 2*k2 + 2*k3 - k4 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,1 + 2*l, 6,-k1 + k2 - 2*k1*l + 2*k2*l ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,0, 6,2*(k1 - k2 + k3 - k4) ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,2*(k1 - k2) ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,0, 6,0 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,0, 6,2*k1 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,2*k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,-1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,2*(1 + 2*l), 6,2*(2*k1 + k2 + 4*k1*l + 2*k2*l) ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,4*k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4NrB8 := function (k, k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,1, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,1, 4,-1, 5,-1 - 4*k, 6,2*k1 + 8*k*k1 - 2*k2 - 6*k*k2 + 2*k3 - k4 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,0 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,-2*k, 6,k1 + 6*k*k1 - 2*k2 - 6*k*k2 + 2*k3 - 2*k4 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,k1 - 2*k2 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,2*k, 6,2*k*k2 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,-2*k, 6,k1 + 2*k*k1 - 2*k*k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,2*k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,-1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,4*k, 6,2*(k*k1 + 2*k*k2) ] ); SetConjugate( FTL, 5, 3, [5,1, 6,0 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,2*k1 ] ); return PcpGroupByCollector(FTL); end; ACPcpGroupDim4NrB8b := function (k, k1, k2, k3 , k4) local FTL; FTL := FromTheLeftCollector( 6 ); SetRelativeOrder( FTL, 1, 2 ); SetPower( FTL, 1, [3,1, 4,0, 5,0, 6,k3 ] ); SetConjugate( FTL, 2, 1, [2, 1 , 3,1, 4,-1, 5,-1 - 4*k, 6,k1 + 2*k*k1 - 2*k*k2 + 2*k3 + k4 ] ); SetConjugate( FTL, 3, 1, [3,1, 4,0, 5,0, 6,2*k3 ] ); SetConjugate( FTL, 4, 1, [3,0, 4,-1, 5,-2*k, 6,-2*k*k2 ] ); SetConjugate( FTL, 5, 1, [3,0, 4,0, 5,-1, 6,k1 ] ); SetConjugate( FTL, 6, 1, [3,0, 4,0, 5,0, 6,-1 ] ); SetRelativeOrder( FTL, 2, 2 ); SetPower( FTL, 2, [3,0, 4,0, 5,1, 6,k2 ] ); SetConjugate( FTL, 3, 2, [3,-1, 4,0, 5,2*k, 6,-k1 + 2*k*k1 + 2*k*k2 ] ); SetConjugate( FTL, 4, 2, [3,0, 4,-1, 5,-2*k, 6,-2*k*k2 ] ); SetConjugate( FTL, 5, 2, [3,0, 4,0, 5,1, 6,2*k2 ] ); SetConjugate( FTL, 6, 2, [3,0, 4,0, 5,0, 6,-1 ] ); SetConjugate( FTL, 4, 3, [4,1, 5,4*k, 6,-2*(k*k1 - 2*k*k2) ] ); SetConjugate( FTL, 5, 3, [5,1, 6,-2*k1 ] ); SetConjugate( FTL, 5, 4, [5,1, 6,0 ] ); return PcpGroupByCollector(FTL); end; ############################################################################# ## ## some small helpers ## ACPcpDim4Funcs := [ ACPcpGroupDim4Nr001, ACPcpGroupDim4Nr002, ACPcpGroupDim4Nr003, ACPcpGroupDim4Nr004, ACPcpGroupDim4Nr004b, ACPcpGroupDim4Nr005, ACPcpGroupDim4Nr006, ACPcpGroupDim4Nr007, ACPcpGroupDim4Nr007b, ACPcpGroupDim4Nr008, ACPcpGroupDim4Nr009, ACPcpGroupDim4Nr009b, ACPcpGroupDim4Nr010, ACPcpGroupDim4Nr011, ACPcpGroupDim4Nr012, ACPcpGroupDim4Nr013, ACPcpGroupDim4Nr014, ACPcpGroupDim4Nr014b, ACPcpGroupDim4Nr015, ACPcpGroupDim4Nr018, ACPcpGroupDim4Nr019, ACPcpGroupDim4Nr019b, ACPcpGroupDim4Nr019c, ACPcpGroupDim4Nr026, ACPcpGroupDim4Nr027, ACPcpGroupDim4Nr029, ACPcpGroupDim4Nr029b, ACPcpGroupDim4Nr029c, ACPcpGroupDim4Nr030, ACPcpGroupDim4Nr031, ACPcpGroupDim4Nr032, ACPcpGroupDim4Nr033, ACPcpGroupDim4Nr033b, ACPcpGroupDim4Nr033c, ACPcpGroupDim4Nr034, ACPcpGroupDim4Nr036, ACPcpGroupDim4Nr037, ACPcpGroupDim4Nr041, ACPcpGroupDim4Nr043, ACPcpGroupDim4Nr045, ACPcpGroupDim4Nr055, ACPcpGroupDim4Nr056, ACPcpGroupDim4Nr058, ACPcpGroupDim4Nr060, ACPcpGroupDim4Nr061, ACPcpGroupDim4Nr061b, ACPcpGroupDim4Nr061c, ACPcpGroupDim4Nr062, ACPcpGroupDim4Nr075, ACPcpGroupDim4Nr076, ACPcpGroupDim4Nr077, ACPcpGroupDim4Nr079, ACPcpGroupDim4Nr080, ACPcpGroupDim4Nr081, ACPcpGroupDim4Nr082, ACPcpGroupDim4Nr083, ACPcpGroupDim4Nr084, ACPcpGroupDim4Nr085, ACPcpGroupDim4Nr086, ACPcpGroupDim4Nr087, ACPcpGroupDim4Nr088, ACPcpGroupDim4Nr103, ACPcpGroupDim4Nr104, ACPcpGroupDim4Nr106, ACPcpGroupDim4Nr110, ACPcpGroupDim4Nr114, ACPcpGroupDim4Nr143, ACPcpGroupDim4Nr144, ACPcpGroupDim4Nr146, ACPcpGroupDim4Nr147, ACPcpGroupDim4Nr148, ACPcpGroupDim4Nr158, ACPcpGroupDim4Nr159, ACPcpGroupDim4Nr161, ACPcpGroupDim4Nr168, ACPcpGroupDim4Nr169, ACPcpGroupDim4Nr172, ACPcpGroupDim4Nr173, ACPcpGroupDim4Nr174, ACPcpGroupDim4Nr175, ACPcpGroupDim4Nr176, ACPcpGroupDim4Nr184, ACPcpGroupDim4NrB1, ACPcpGroupDim4NrB2, ACPcpGroupDim4NrB3c, ACPcpGroupDim4NrB3b, ACPcpGroupDim4NrB3, ACPcpGroupDim4NrB4, ACPcpGroupDim4NrB4b, ACPcpGroupDim4NrB5, ACPcpGroupDim4NrB5b, ACPcpGroupDim4NrB7, ACPcpGroupDim4NrB7b, ACPcpGroupDim4NrB8, ACPcpGroupDim4NrB8b ]; MakeReadOnlyGlobal( "ACPcpDim4Funcs" );