GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Select option: 1 Input group identifier: c3c3 Input prime: 3 Input maximum class: 1 Input print level (0-3): 1 Input generating set (in { }): Input defining set of relations (in { }): Input exponent law (0 if none): 0 Lower exponent-3 central series for c3c3 Group: c3c3 to lower exponent-3 central class 1 has order 3^2 Select option: 7 Group: c3c3 to lower exponent-3 central class 2 has order 3^5 Select option: 9 Menu for p-Group Generation ----------------------------- 1. Read automorphism information for starting group 2. Extend and display automorphisms 3. Specify input file and group number 4. List group presentation 5. Construct descendants 6. Advanced p-group generation menu 7. Exit to basic menu Select option: 1 Input the number of automorphisms: 5 Now enter the data for automorphism 1 Input 2 exponents for image of pcp generator 1: 2 0 Input 2 exponents for image of pcp generator 2: 0 2 Now enter the data for automorphism 2 Input 2 exponents for image of pcp generator 1: 0 2 Input 2 exponents for image of pcp generator 2: 1 0 Now enter the data for automorphism 3 Input 2 exponents for image of pcp generator 1: 1 2 Input 2 exponents for image of pcp generator 2: 2 2 Now enter the data for automorphism 4 Input 2 exponents for image of pcp generator 1: 1 0 Input 2 exponents for image of pcp generator 2: 2 1 Now enter the data for automorphism 5 Input 2 exponents for image of pcp generator 1: 2 0 Input 2 exponents for image of pcp generator 2: 0 1 Input number of soluble generators for automorphism group: 0 Select option: 5 Input class bound on descendants: 4 Construct all descendants? 0 Constant step size? 0 Input 3 step sizes: 2 3 1 PAG-generating sequence for automorphism group? 1 Do you want default algorithm? 1 Do you want default output? 1 ************************************************** Starting group: c3c3 Order: 3^2 Nuclear rank: 3 3-multiplicator rank: 3 # of immediate descendants of order 3^4 is 3 # of capable immediate descendants is 3 ************************************************** 3 capable groups saved on file c3c3_class2 ************************************************** Starting group: c3c3 #1;2 Order: 3^4 Nuclear rank: 2 3-multiplicator rank: 3 Group c3c3 #1;2 is an invalid starting group ************************************************** Starting group: c3c3 #2;2 Order: 3^4 Nuclear rank: 3 3-multiplicator rank: 4 # of immediate descendants of order 3^7 is 4 # of capable immediate descendants is 4 ************************************************** Starting group: c3c3 #3;2 Order: 3^4 Nuclear rank: 2 3-multiplicator rank: 3 Group c3c3 #3;2 is an invalid starting group ************************************************** 4 capable groups saved on file c3c3_class3 ************************************************** Starting group: c3c3 #2;2 #1;3 Order: 3^7 Nuclear rank: 4 3-multiplicator rank: 5 # of immediate descendants of order 3^8 is 16 # of capable immediate descendants is 11 ************************************************** Starting group: c3c3 #2;2 #2;3 Order: 3^7 Nuclear rank: 3 3-multiplicator rank: 4 # of immediate descendants of order 3^8 is 13 # of capable immediate descendants is 9 ************************************************** Starting group: c3c3 #2;2 #3;3 Order: 3^7 Nuclear rank: 3 3-multiplicator rank: 4 # of immediate descendants of order 3^8 is 13 # of capable immediate descendants is 9 ************************************************** Starting group: c3c3 #2;2 #4;3 Order: 3^7 Nuclear rank: 3 3-multiplicator rank: 4 # of immediate descendants of order 3^8 is 7 # of capable immediate descendants is 5 ************************************************** 34 capable groups saved on file c3c3_class4 Select option: 0 Exiting from p-group generation Select option: 0 Exiting from ANU p-Quotient Program