Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52867 views
1
/*
2
* AAC encoder long term prediction extension
3
* Copyright (C) 2015 Rostislav Pehlivanov
4
*
5
* This file is part of FFmpeg.
6
*
7
* FFmpeg is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU Lesser General Public
9
* License as published by the Free Software Foundation; either
10
* version 2.1 of the License, or (at your option) any later version.
11
*
12
* FFmpeg is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15
* Lesser General Public License for more details.
16
*
17
* You should have received a copy of the GNU Lesser General Public
18
* License along with FFmpeg; if not, write to the Free Software
19
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
*/
21
22
/**
23
* @file
24
* AAC encoder long term prediction extension
25
* @author Rostislav Pehlivanov ( atomnuker gmail com )
26
*/
27
28
#include "aacenc_ltp.h"
29
#include "aacenc_quantization.h"
30
#include "aacenc_utils.h"
31
32
/**
33
* Encode LTP data.
34
*/
35
void ff_aac_encode_ltp_info(AACEncContext *s, SingleChannelElement *sce,
36
int common_window)
37
{
38
int i;
39
IndividualChannelStream *ics = &sce->ics;
40
if (s->profile != FF_PROFILE_AAC_LTP || !ics->predictor_present)
41
return;
42
if (common_window)
43
put_bits(&s->pb, 1, 0);
44
put_bits(&s->pb, 1, ics->ltp.present);
45
if (!ics->ltp.present)
46
return;
47
put_bits(&s->pb, 11, ics->ltp.lag);
48
put_bits(&s->pb, 3, ics->ltp.coef_idx);
49
for (i = 0; i < FFMIN(ics->max_sfb, MAX_LTP_LONG_SFB); i++)
50
put_bits(&s->pb, 1, ics->ltp.used[i]);
51
}
52
53
void ff_aac_ltp_insert_new_frame(AACEncContext *s)
54
{
55
int i, ch, tag, chans, cur_channel, start_ch = 0;
56
ChannelElement *cpe;
57
SingleChannelElement *sce;
58
for (i = 0; i < s->chan_map[0]; i++) {
59
cpe = &s->cpe[i];
60
tag = s->chan_map[i+1];
61
chans = tag == TYPE_CPE ? 2 : 1;
62
for (ch = 0; ch < chans; ch++) {
63
sce = &cpe->ch[ch];
64
cur_channel = start_ch + ch;
65
/* New sample + overlap */
66
memcpy(&sce->ltp_state[0], &sce->ltp_state[1024], 1024*sizeof(sce->ltp_state[0]));
67
memcpy(&sce->ltp_state[1024], &s->planar_samples[cur_channel][2048], 1024*sizeof(sce->ltp_state[0]));
68
memcpy(&sce->ltp_state[2048], &sce->ret_buf[0], 1024*sizeof(sce->ltp_state[0]));
69
sce->ics.ltp.lag = 0;
70
}
71
start_ch += chans;
72
}
73
}
74
75
static void get_lag(float *buf, const float *new, LongTermPrediction *ltp)
76
{
77
int i, j, lag, max_corr = 0;
78
float max_ratio;
79
for (i = 0; i < 2048; i++) {
80
float corr, s0 = 0.0f, s1 = 0.0f;
81
const int start = FFMAX(0, i - 1024);
82
for (j = start; j < 2048; j++) {
83
const int idx = j - i + 1024;
84
s0 += new[j]*buf[idx];
85
s1 += buf[idx]*buf[idx];
86
}
87
corr = s1 > 0.0f ? s0/sqrt(s1) : 0.0f;
88
if (corr > max_corr) {
89
max_corr = corr;
90
lag = i;
91
max_ratio = corr/(2048-start);
92
}
93
}
94
ltp->lag = FFMAX(av_clip_uintp2(lag, 11), 0);
95
ltp->coef_idx = quant_array_idx(max_ratio, ltp_coef, 8);
96
ltp->coef = ltp_coef[ltp->coef_idx];
97
}
98
99
static void generate_samples(float *buf, LongTermPrediction *ltp)
100
{
101
int i, samples_num = 2048;
102
if (!ltp->lag) {
103
ltp->present = 0;
104
return;
105
} else if (ltp->lag < 1024) {
106
samples_num = ltp->lag + 1024;
107
}
108
for (i = 0; i < samples_num; i++)
109
buf[i] = ltp->coef*buf[i + 2048 - ltp->lag];
110
memset(&buf[i], 0, (2048 - i)*sizeof(float));
111
}
112
113
/**
114
* Process LTP parameters
115
* @see Patent WO2006070265A1
116
*/
117
void ff_aac_update_ltp(AACEncContext *s, SingleChannelElement *sce)
118
{
119
float *pred_signal = &sce->ltp_state[0];
120
const float *samples = &s->planar_samples[s->cur_channel][1024];
121
122
if (s->profile != FF_PROFILE_AAC_LTP)
123
return;
124
125
/* Calculate lag */
126
get_lag(pred_signal, samples, &sce->ics.ltp);
127
generate_samples(pred_signal, &sce->ics.ltp);
128
}
129
130
void ff_aac_adjust_common_ltp(AACEncContext *s, ChannelElement *cpe)
131
{
132
int sfb, count = 0;
133
SingleChannelElement *sce0 = &cpe->ch[0];
134
SingleChannelElement *sce1 = &cpe->ch[1];
135
136
if (!cpe->common_window ||
137
sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE ||
138
sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
139
sce0->ics.ltp.present = 0;
140
return;
141
}
142
143
for (sfb = 0; sfb < FFMIN(sce0->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++) {
144
int sum = sce0->ics.ltp.used[sfb] + sce1->ics.ltp.used[sfb];
145
if (sum != 2) {
146
sce0->ics.ltp.used[sfb] = 0;
147
} else if (sum == 2) {
148
count++;
149
}
150
}
151
152
sce0->ics.ltp.present = !!count;
153
sce0->ics.predictor_present = !!count;
154
}
155
156
/**
157
* Mark LTP sfb's
158
*/
159
void ff_aac_search_for_ltp(AACEncContext *s, SingleChannelElement *sce,
160
int common_window)
161
{
162
int w, g, w2, i, start = 0, count = 0;
163
int saved_bits = -(15 + FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB));
164
float *C34 = &s->scoefs[128*0], *PCD = &s->scoefs[128*1];
165
float *PCD34 = &s->scoefs[128*2];
166
const int max_ltp = FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB);
167
168
if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
169
if (sce->ics.ltp.lag) {
170
memset(&sce->ltp_state[0], 0, 3072*sizeof(sce->ltp_state[0]));
171
memset(&sce->ics.ltp, 0, sizeof(LongTermPrediction));
172
}
173
return;
174
}
175
176
if (!sce->ics.ltp.lag || s->lambda > 120.0f)
177
return;
178
179
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
180
start = 0;
181
for (g = 0; g < sce->ics.num_swb; g++) {
182
int bits1 = 0, bits2 = 0;
183
float dist1 = 0.0f, dist2 = 0.0f;
184
if (w*16+g > max_ltp) {
185
start += sce->ics.swb_sizes[g];
186
continue;
187
}
188
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
189
int bits_tmp1, bits_tmp2;
190
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
191
for (i = 0; i < sce->ics.swb_sizes[g]; i++)
192
PCD[i] = sce->coeffs[start+(w+w2)*128+i] - sce->lcoeffs[start+(w+w2)*128+i];
193
abs_pow34_v(C34, &sce->coeffs[start+(w+w2)*128], sce->ics.swb_sizes[g]);
194
abs_pow34_v(PCD34, PCD, sce->ics.swb_sizes[g]);
195
dist1 += quantize_band_cost(s, &sce->coeffs[start+(w+w2)*128], C34, sce->ics.swb_sizes[g],
196
sce->sf_idx[(w+w2)*16+g], sce->band_type[(w+w2)*16+g],
197
s->lambda/band->threshold, INFINITY, &bits_tmp1, NULL, 0);
198
dist2 += quantize_band_cost(s, PCD, PCD34, sce->ics.swb_sizes[g],
199
sce->sf_idx[(w+w2)*16+g],
200
sce->band_type[(w+w2)*16+g],
201
s->lambda/band->threshold, INFINITY, &bits_tmp2, NULL, 0);
202
bits1 += bits_tmp1;
203
bits2 += bits_tmp2;
204
}
205
if (dist2 < dist1 && bits2 < bits1) {
206
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
207
for (i = 0; i < sce->ics.swb_sizes[g]; i++)
208
sce->coeffs[start+(w+w2)*128+i] -= sce->lcoeffs[start+(w+w2)*128+i];
209
sce->ics.ltp.used[w*16+g] = 1;
210
saved_bits += bits1 - bits2;
211
count++;
212
}
213
start += sce->ics.swb_sizes[g];
214
}
215
}
216
217
sce->ics.ltp.present = !!count && (saved_bits >= 0);
218
sce->ics.predictor_present = !!sce->ics.ltp.present;
219
220
/* Reset any marked sfbs */
221
if (!sce->ics.ltp.present && !!count) {
222
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
223
start = 0;
224
for (g = 0; g < sce->ics.num_swb; g++) {
225
if (sce->ics.ltp.used[w*16+g]) {
226
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
227
for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
228
sce->coeffs[start+(w+w2)*128+i] += sce->lcoeffs[start+(w+w2)*128+i];
229
}
230
}
231
}
232
start += sce->ics.swb_sizes[g];
233
}
234
}
235
}
236
}
237
238