Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52867 views
1
/*
2
* AAC encoder main-type prediction
3
* Copyright (C) 2015 Rostislav Pehlivanov
4
*
5
* This file is part of FFmpeg.
6
*
7
* FFmpeg is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU Lesser General Public
9
* License as published by the Free Software Foundation; either
10
* version 2.1 of the License, or (at your option) any later version.
11
*
12
* FFmpeg is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15
* Lesser General Public License for more details.
16
*
17
* You should have received a copy of the GNU Lesser General Public
18
* License along with FFmpeg; if not, write to the Free Software
19
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
*/
21
22
/**
23
* @file
24
* AAC encoder main-type prediction
25
* @author Rostislav Pehlivanov ( atomnuker gmail com )
26
*/
27
28
#include "aactab.h"
29
#include "aacenc_pred.h"
30
#include "aacenc_utils.h"
31
#include "aacenc_is.h" /* <- Needed for common window distortions */
32
#include "aacenc_quantization.h"
33
34
#define RESTORE_PRED(sce, sfb) \
35
if (sce->ics.prediction_used[sfb]) {\
36
sce->ics.prediction_used[sfb] = 0;\
37
sce->band_type[sfb] = sce->band_alt[sfb];\
38
}
39
40
static inline float flt16_round(float pf)
41
{
42
union av_intfloat32 tmp;
43
tmp.f = pf;
44
tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
45
return tmp.f;
46
}
47
48
static inline float flt16_even(float pf)
49
{
50
union av_intfloat32 tmp;
51
tmp.f = pf;
52
tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
53
return tmp.f;
54
}
55
56
static inline float flt16_trunc(float pf)
57
{
58
union av_intfloat32 pun;
59
pun.f = pf;
60
pun.i &= 0xFFFF0000U;
61
return pun.f;
62
}
63
64
static inline void predict(PredictorState *ps, float *coef, float *rcoef, int set)
65
{
66
float k2;
67
const float a = 0.953125; // 61.0 / 64
68
const float alpha = 0.90625; // 29.0 / 32
69
const float k1 = ps->k1;
70
const float r0 = ps->r0, r1 = ps->r1;
71
const float cor0 = ps->cor0, cor1 = ps->cor1;
72
const float var0 = ps->var0, var1 = ps->var1;
73
const float e0 = *coef - ps->x_est;
74
const float e1 = e0 - k1 * r0;
75
76
if (set)
77
*coef = e0;
78
79
ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
80
ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
81
ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
82
ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
83
ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
84
ps->r0 = flt16_trunc(a * e0);
85
86
/* Prediction for next frame */
87
ps->k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
88
k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
89
*rcoef = ps->x_est = flt16_round(ps->k1*ps->r0 + k2*ps->r1);
90
}
91
92
static inline void reset_predict_state(PredictorState *ps)
93
{
94
ps->r0 = 0.0f;
95
ps->r1 = 0.0f;
96
ps->k1 = 0.0f;
97
ps->cor0 = 0.0f;
98
ps->cor1 = 0.0f;
99
ps->var0 = 1.0f;
100
ps->var1 = 1.0f;
101
ps->x_est = 0.0f;
102
}
103
104
static inline void reset_all_predictors(PredictorState *ps)
105
{
106
int i;
107
for (i = 0; i < MAX_PREDICTORS; i++)
108
reset_predict_state(&ps[i]);
109
}
110
111
static inline void reset_predictor_group(SingleChannelElement *sce, int group_num)
112
{
113
int i;
114
PredictorState *ps = sce->predictor_state;
115
for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
116
reset_predict_state(&ps[i]);
117
}
118
119
void ff_aac_apply_main_pred(AACEncContext *s, SingleChannelElement *sce)
120
{
121
int sfb, k;
122
const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
123
124
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
125
for (sfb = 0; sfb < pmax; sfb++) {
126
for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
127
predict(&sce->predictor_state[k], &sce->coeffs[k], &sce->prcoeffs[k],
128
sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
129
}
130
}
131
if (sce->ics.predictor_reset_group) {
132
reset_predictor_group(sce, sce->ics.predictor_reset_group);
133
}
134
} else {
135
reset_all_predictors(sce->predictor_state);
136
}
137
}
138
139
/* If inc = 0 you can check if this returns 0 to see if you can reset freely */
140
static inline int update_counters(IndividualChannelStream *ics, int inc)
141
{
142
int i;
143
for (i = 1; i < 31; i++) {
144
ics->predictor_reset_count[i] += inc;
145
if (ics->predictor_reset_count[i] > PRED_RESET_FRAME_MIN)
146
return i; /* Reset this immediately */
147
}
148
return 0;
149
}
150
151
void ff_aac_adjust_common_pred(AACEncContext *s, ChannelElement *cpe)
152
{
153
int start, w, w2, g, i, count = 0;
154
SingleChannelElement *sce0 = &cpe->ch[0];
155
SingleChannelElement *sce1 = &cpe->ch[1];
156
const int pmax0 = FFMIN(sce0->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
157
const int pmax1 = FFMIN(sce1->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
158
const int pmax = FFMIN(pmax0, pmax1);
159
160
if (!cpe->common_window ||
161
sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE ||
162
sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE)
163
return;
164
165
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
166
start = 0;
167
for (g = 0; g < sce0->ics.num_swb; g++) {
168
int sfb = w*16+g;
169
int sum = sce0->ics.prediction_used[sfb] + sce1->ics.prediction_used[sfb];
170
float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f;
171
struct AACISError ph_err1, ph_err2, *erf;
172
if (sfb < PRED_SFB_START || sfb > pmax || sum != 2) {
173
RESTORE_PRED(sce0, sfb);
174
RESTORE_PRED(sce1, sfb);
175
start += sce0->ics.swb_sizes[g];
176
continue;
177
}
178
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
179
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
180
float coef0 = sce0->pcoeffs[start+(w+w2)*128+i];
181
float coef1 = sce1->pcoeffs[start+(w+w2)*128+i];
182
ener0 += coef0*coef0;
183
ener1 += coef1*coef1;
184
ener01 += (coef0 + coef1)*(coef0 + coef1);
185
}
186
}
187
ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g,
188
ener0, ener1, ener01, 1, -1);
189
ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g,
190
ener0, ener1, ener01, 1, +1);
191
erf = ph_err1.error < ph_err2.error ? &ph_err1 : &ph_err2;
192
if (erf->pass) {
193
sce0->ics.prediction_used[sfb] = 1;
194
sce1->ics.prediction_used[sfb] = 1;
195
count++;
196
} else {
197
RESTORE_PRED(sce0, sfb);
198
RESTORE_PRED(sce1, sfb);
199
}
200
start += sce0->ics.swb_sizes[g];
201
}
202
}
203
204
sce1->ics.predictor_present = sce0->ics.predictor_present = !!count;
205
}
206
207
static void update_pred_resets(SingleChannelElement *sce)
208
{
209
int i, max_group_id_c, max_frame = 0;
210
float avg_frame = 0.0f;
211
IndividualChannelStream *ics = &sce->ics;
212
213
/* Update the counters and immediately update any frame behind schedule */
214
if ((ics->predictor_reset_group = update_counters(&sce->ics, 1)))
215
return;
216
217
for (i = 1; i < 31; i++) {
218
/* Count-based */
219
if (ics->predictor_reset_count[i] > max_frame) {
220
max_group_id_c = i;
221
max_frame = ics->predictor_reset_count[i];
222
}
223
avg_frame = (ics->predictor_reset_count[i] + avg_frame)/2;
224
}
225
226
if (max_frame > PRED_RESET_MIN) {
227
ics->predictor_reset_group = max_group_id_c;
228
} else {
229
ics->predictor_reset_group = 0;
230
}
231
}
232
233
void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce)
234
{
235
int sfb, i, count = 0, cost_coeffs = 0, cost_pred = 0;
236
const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
237
float *O34 = &s->scoefs[128*0], *P34 = &s->scoefs[128*1];
238
float *SENT = &s->scoefs[128*2], *S34 = &s->scoefs[128*3];
239
float *QERR = &s->scoefs[128*4];
240
241
if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
242
sce->ics.predictor_present = 0;
243
return;
244
}
245
246
if (!sce->ics.predictor_initialized) {
247
reset_all_predictors(sce->predictor_state);
248
sce->ics.predictor_initialized = 1;
249
memcpy(sce->prcoeffs, sce->coeffs, 1024*sizeof(float));
250
for (i = 1; i < 31; i++)
251
sce->ics.predictor_reset_count[i] = i;
252
}
253
254
update_pred_resets(sce);
255
memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
256
257
for (sfb = PRED_SFB_START; sfb < pmax; sfb++) {
258
int cost1, cost2, cb_p;
259
float dist1, dist2, dist_spec_err = 0.0f;
260
const int cb_n = sce->zeroes[sfb] ? 0 : sce->band_type[sfb];
261
const int cb_min = sce->zeroes[sfb] ? 0 : 1;
262
const int cb_max = sce->zeroes[sfb] ? 0 : RESERVED_BT;
263
const int start_coef = sce->ics.swb_offset[sfb];
264
const int num_coeffs = sce->ics.swb_offset[sfb + 1] - start_coef;
265
const FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[sfb];
266
267
if (start_coef + num_coeffs > MAX_PREDICTORS ||
268
(s->cur_channel && sce->band_type[sfb] >= INTENSITY_BT2) ||
269
sce->band_type[sfb] == NOISE_BT)
270
continue;
271
272
/* Normal coefficients */
273
abs_pow34_v(O34, &sce->coeffs[start_coef], num_coeffs);
274
dist1 = quantize_and_encode_band_cost(s, NULL, &sce->coeffs[start_coef], NULL,
275
O34, num_coeffs, sce->sf_idx[sfb],
276
cb_n, s->lambda / band->threshold, INFINITY, &cost1, NULL, 0);
277
cost_coeffs += cost1;
278
279
/* Encoded coefficients - needed for #bits, band type and quant. error */
280
for (i = 0; i < num_coeffs; i++)
281
SENT[i] = sce->coeffs[start_coef + i] - sce->prcoeffs[start_coef + i];
282
abs_pow34_v(S34, SENT, num_coeffs);
283
if (cb_n < RESERVED_BT)
284
cb_p = av_clip(find_min_book(find_max_val(1, num_coeffs, S34), sce->sf_idx[sfb]), cb_min, cb_max);
285
else
286
cb_p = cb_n;
287
quantize_and_encode_band_cost(s, NULL, SENT, QERR, S34, num_coeffs,
288
sce->sf_idx[sfb], cb_p, s->lambda / band->threshold, INFINITY,
289
&cost2, NULL, 0);
290
291
/* Reconstructed coefficients - needed for distortion measurements */
292
for (i = 0; i < num_coeffs; i++)
293
sce->prcoeffs[start_coef + i] += QERR[i] != 0.0f ? (sce->prcoeffs[start_coef + i] - QERR[i]) : 0.0f;
294
abs_pow34_v(P34, &sce->prcoeffs[start_coef], num_coeffs);
295
if (cb_n < RESERVED_BT)
296
cb_p = av_clip(find_min_book(find_max_val(1, num_coeffs, P34), sce->sf_idx[sfb]), cb_min, cb_max);
297
else
298
cb_p = cb_n;
299
dist2 = quantize_and_encode_band_cost(s, NULL, &sce->prcoeffs[start_coef], NULL,
300
P34, num_coeffs, sce->sf_idx[sfb],
301
cb_p, s->lambda / band->threshold, INFINITY, NULL, NULL, 0);
302
for (i = 0; i < num_coeffs; i++)
303
dist_spec_err += (O34[i] - P34[i])*(O34[i] - P34[i]);
304
dist_spec_err *= s->lambda / band->threshold;
305
dist2 += dist_spec_err;
306
307
if (dist2 <= dist1 && cb_p <= cb_n) {
308
cost_pred += cost2;
309
sce->ics.prediction_used[sfb] = 1;
310
sce->band_alt[sfb] = cb_n;
311
sce->band_type[sfb] = cb_p;
312
count++;
313
} else {
314
cost_pred += cost1;
315
sce->band_alt[sfb] = cb_p;
316
}
317
}
318
319
if (count && cost_coeffs < cost_pred) {
320
count = 0;
321
for (sfb = PRED_SFB_START; sfb < pmax; sfb++)
322
RESTORE_PRED(sce, sfb);
323
memset(&sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
324
}
325
326
sce->ics.predictor_present = !!count;
327
}
328
329
/**
330
* Encoder predictors data.
331
*/
332
void ff_aac_encode_main_pred(AACEncContext *s, SingleChannelElement *sce)
333
{
334
int sfb;
335
IndividualChannelStream *ics = &sce->ics;
336
const int pmax = FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
337
338
if (s->profile != FF_PROFILE_AAC_MAIN ||
339
!ics->predictor_present)
340
return;
341
342
put_bits(&s->pb, 1, !!ics->predictor_reset_group);
343
if (ics->predictor_reset_group)
344
put_bits(&s->pb, 5, ics->predictor_reset_group);
345
for (sfb = 0; sfb < pmax; sfb++)
346
put_bits(&s->pb, 1, ics->prediction_used[sfb]);
347
}
348
349