Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52867 views
1
/*
2
* Copyright (c) 2012 Pavel Koshevoy <pkoshevoy at gmail dot com>
3
*
4
* This file is part of FFmpeg.
5
*
6
* FFmpeg is free software; you can redistribute it and/or
7
* modify it under the terms of the GNU Lesser General Public
8
* License as published by the Free Software Foundation; either
9
* version 2.1 of the License, or (at your option) any later version.
10
*
11
* FFmpeg is distributed in the hope that it will be useful,
12
* but WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14
* Lesser General Public License for more details.
15
*
16
* You should have received a copy of the GNU Lesser General Public
17
* License along with FFmpeg; if not, write to the Free Software
18
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
*/
20
21
/**
22
* @file
23
* tempo scaling audio filter -- an implementation of WSOLA algorithm
24
*
25
* Based on MIT licensed yaeAudioTempoFilter.h and yaeAudioFragment.h
26
* from Apprentice Video player by Pavel Koshevoy.
27
* https://sourceforge.net/projects/apprenticevideo/
28
*
29
* An explanation of SOLA algorithm is available at
30
* http://www.surina.net/article/time-and-pitch-scaling.html
31
*
32
* WSOLA is very similar to SOLA, only one major difference exists between
33
* these algorithms. SOLA shifts audio fragments along the output stream,
34
* where as WSOLA shifts audio fragments along the input stream.
35
*
36
* The advantage of WSOLA algorithm is that the overlap region size is
37
* always the same, therefore the blending function is constant and
38
* can be precomputed.
39
*/
40
41
#include <float.h>
42
#include "libavcodec/avfft.h"
43
#include "libavutil/avassert.h"
44
#include "libavutil/avstring.h"
45
#include "libavutil/channel_layout.h"
46
#include "libavutil/eval.h"
47
#include "libavutil/opt.h"
48
#include "libavutil/samplefmt.h"
49
#include "avfilter.h"
50
#include "audio.h"
51
#include "internal.h"
52
53
/**
54
* A fragment of audio waveform
55
*/
56
typedef struct {
57
// index of the first sample of this fragment in the overall waveform;
58
// 0: input sample position
59
// 1: output sample position
60
int64_t position[2];
61
62
// original packed multi-channel samples:
63
uint8_t *data;
64
65
// number of samples in this fragment:
66
int nsamples;
67
68
// rDFT transform of the down-mixed mono fragment, used for
69
// fast waveform alignment via correlation in frequency domain:
70
FFTSample *xdat;
71
} AudioFragment;
72
73
/**
74
* Filter state machine states
75
*/
76
typedef enum {
77
YAE_LOAD_FRAGMENT,
78
YAE_ADJUST_POSITION,
79
YAE_RELOAD_FRAGMENT,
80
YAE_OUTPUT_OVERLAP_ADD,
81
YAE_FLUSH_OUTPUT,
82
} FilterState;
83
84
/**
85
* Filter state machine
86
*/
87
typedef struct {
88
const AVClass *class;
89
90
// ring-buffer of input samples, necessary because some times
91
// input fragment position may be adjusted backwards:
92
uint8_t *buffer;
93
94
// ring-buffer maximum capacity, expressed in sample rate time base:
95
int ring;
96
97
// ring-buffer house keeping:
98
int size;
99
int head;
100
int tail;
101
102
// 0: input sample position corresponding to the ring buffer tail
103
// 1: output sample position
104
int64_t position[2];
105
106
// sample format:
107
enum AVSampleFormat format;
108
109
// number of channels:
110
int channels;
111
112
// row of bytes to skip from one sample to next, across multple channels;
113
// stride = (number-of-channels * bits-per-sample-per-channel) / 8
114
int stride;
115
116
// fragment window size, power-of-two integer:
117
int window;
118
119
// Hann window coefficients, for feathering
120
// (blending) the overlapping fragment region:
121
float *hann;
122
123
// tempo scaling factor:
124
double tempo;
125
126
// a snapshot of previous fragment input and output position values
127
// captured when the tempo scale factor was set most recently:
128
int64_t origin[2];
129
130
// current/previous fragment ring-buffer:
131
AudioFragment frag[2];
132
133
// current fragment index:
134
uint64_t nfrag;
135
136
// current state:
137
FilterState state;
138
139
// for fast correlation calculation in frequency domain:
140
RDFTContext *real_to_complex;
141
RDFTContext *complex_to_real;
142
FFTSample *correlation;
143
144
// for managing AVFilterPad.request_frame and AVFilterPad.filter_frame
145
AVFrame *dst_buffer;
146
uint8_t *dst;
147
uint8_t *dst_end;
148
uint64_t nsamples_in;
149
uint64_t nsamples_out;
150
} ATempoContext;
151
152
#define OFFSET(x) offsetof(ATempoContext, x)
153
154
static const AVOption atempo_options[] = {
155
{ "tempo", "set tempo scale factor",
156
OFFSET(tempo), AV_OPT_TYPE_DOUBLE, { .dbl = 1.0 }, 0.5, 2.0,
157
AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_FILTERING_PARAM },
158
{ NULL }
159
};
160
161
AVFILTER_DEFINE_CLASS(atempo);
162
163
inline static AudioFragment *yae_curr_frag(ATempoContext *atempo)
164
{
165
return &atempo->frag[atempo->nfrag % 2];
166
}
167
168
inline static AudioFragment *yae_prev_frag(ATempoContext *atempo)
169
{
170
return &atempo->frag[(atempo->nfrag + 1) % 2];
171
}
172
173
/**
174
* Reset filter to initial state, do not deallocate existing local buffers.
175
*/
176
static void yae_clear(ATempoContext *atempo)
177
{
178
atempo->size = 0;
179
atempo->head = 0;
180
atempo->tail = 0;
181
182
atempo->nfrag = 0;
183
atempo->state = YAE_LOAD_FRAGMENT;
184
185
atempo->position[0] = 0;
186
atempo->position[1] = 0;
187
188
atempo->origin[0] = 0;
189
atempo->origin[1] = 0;
190
191
atempo->frag[0].position[0] = 0;
192
atempo->frag[0].position[1] = 0;
193
atempo->frag[0].nsamples = 0;
194
195
atempo->frag[1].position[0] = 0;
196
atempo->frag[1].position[1] = 0;
197
atempo->frag[1].nsamples = 0;
198
199
// shift left position of 1st fragment by half a window
200
// so that no re-normalization would be required for
201
// the left half of the 1st fragment:
202
atempo->frag[0].position[0] = -(int64_t)(atempo->window / 2);
203
atempo->frag[0].position[1] = -(int64_t)(atempo->window / 2);
204
205
av_frame_free(&atempo->dst_buffer);
206
atempo->dst = NULL;
207
atempo->dst_end = NULL;
208
209
atempo->nsamples_in = 0;
210
atempo->nsamples_out = 0;
211
}
212
213
/**
214
* Reset filter to initial state and deallocate all buffers.
215
*/
216
static void yae_release_buffers(ATempoContext *atempo)
217
{
218
yae_clear(atempo);
219
220
av_freep(&atempo->frag[0].data);
221
av_freep(&atempo->frag[1].data);
222
av_freep(&atempo->frag[0].xdat);
223
av_freep(&atempo->frag[1].xdat);
224
225
av_freep(&atempo->buffer);
226
av_freep(&atempo->hann);
227
av_freep(&atempo->correlation);
228
229
av_rdft_end(atempo->real_to_complex);
230
atempo->real_to_complex = NULL;
231
232
av_rdft_end(atempo->complex_to_real);
233
atempo->complex_to_real = NULL;
234
}
235
236
/* av_realloc is not aligned enough; fortunately, the data does not need to
237
* be preserved */
238
#define RE_MALLOC_OR_FAIL(field, field_size) \
239
do { \
240
av_freep(&field); \
241
field = av_malloc(field_size); \
242
if (!field) { \
243
yae_release_buffers(atempo); \
244
return AVERROR(ENOMEM); \
245
} \
246
} while (0)
247
248
/**
249
* Prepare filter for processing audio data of given format,
250
* sample rate and number of channels.
251
*/
252
static int yae_reset(ATempoContext *atempo,
253
enum AVSampleFormat format,
254
int sample_rate,
255
int channels)
256
{
257
const int sample_size = av_get_bytes_per_sample(format);
258
uint32_t nlevels = 0;
259
uint32_t pot;
260
int i;
261
262
atempo->format = format;
263
atempo->channels = channels;
264
atempo->stride = sample_size * channels;
265
266
// pick a segment window size:
267
atempo->window = sample_rate / 24;
268
269
// adjust window size to be a power-of-two integer:
270
nlevels = av_log2(atempo->window);
271
pot = 1 << nlevels;
272
av_assert0(pot <= atempo->window);
273
274
if (pot < atempo->window) {
275
atempo->window = pot * 2;
276
nlevels++;
277
}
278
279
// initialize audio fragment buffers:
280
RE_MALLOC_OR_FAIL(atempo->frag[0].data, atempo->window * atempo->stride);
281
RE_MALLOC_OR_FAIL(atempo->frag[1].data, atempo->window * atempo->stride);
282
RE_MALLOC_OR_FAIL(atempo->frag[0].xdat, atempo->window * sizeof(FFTComplex));
283
RE_MALLOC_OR_FAIL(atempo->frag[1].xdat, atempo->window * sizeof(FFTComplex));
284
285
// initialize rDFT contexts:
286
av_rdft_end(atempo->real_to_complex);
287
atempo->real_to_complex = NULL;
288
289
av_rdft_end(atempo->complex_to_real);
290
atempo->complex_to_real = NULL;
291
292
atempo->real_to_complex = av_rdft_init(nlevels + 1, DFT_R2C);
293
if (!atempo->real_to_complex) {
294
yae_release_buffers(atempo);
295
return AVERROR(ENOMEM);
296
}
297
298
atempo->complex_to_real = av_rdft_init(nlevels + 1, IDFT_C2R);
299
if (!atempo->complex_to_real) {
300
yae_release_buffers(atempo);
301
return AVERROR(ENOMEM);
302
}
303
304
RE_MALLOC_OR_FAIL(atempo->correlation, atempo->window * sizeof(FFTComplex));
305
306
atempo->ring = atempo->window * 3;
307
RE_MALLOC_OR_FAIL(atempo->buffer, atempo->ring * atempo->stride);
308
309
// initialize the Hann window function:
310
RE_MALLOC_OR_FAIL(atempo->hann, atempo->window * sizeof(float));
311
312
for (i = 0; i < atempo->window; i++) {
313
double t = (double)i / (double)(atempo->window - 1);
314
double h = 0.5 * (1.0 - cos(2.0 * M_PI * t));
315
atempo->hann[i] = (float)h;
316
}
317
318
yae_clear(atempo);
319
return 0;
320
}
321
322
static int yae_set_tempo(AVFilterContext *ctx, const char *arg_tempo)
323
{
324
const AudioFragment *prev;
325
ATempoContext *atempo = ctx->priv;
326
char *tail = NULL;
327
double tempo = av_strtod(arg_tempo, &tail);
328
329
if (tail && *tail) {
330
av_log(ctx, AV_LOG_ERROR, "Invalid tempo value '%s'\n", arg_tempo);
331
return AVERROR(EINVAL);
332
}
333
334
if (tempo < 0.5 || tempo > 2.0) {
335
av_log(ctx, AV_LOG_ERROR, "Tempo value %f exceeds [0.5, 2.0] range\n",
336
tempo);
337
return AVERROR(EINVAL);
338
}
339
340
prev = yae_prev_frag(atempo);
341
atempo->origin[0] = prev->position[0] + atempo->window / 2;
342
atempo->origin[1] = prev->position[1] + atempo->window / 2;
343
atempo->tempo = tempo;
344
return 0;
345
}
346
347
/**
348
* A helper macro for initializing complex data buffer with scalar data
349
* of a given type.
350
*/
351
#define yae_init_xdat(scalar_type, scalar_max) \
352
do { \
353
const uint8_t *src_end = src + \
354
frag->nsamples * atempo->channels * sizeof(scalar_type); \
355
\
356
FFTSample *xdat = frag->xdat; \
357
scalar_type tmp; \
358
\
359
if (atempo->channels == 1) { \
360
for (; src < src_end; xdat++) { \
361
tmp = *(const scalar_type *)src; \
362
src += sizeof(scalar_type); \
363
\
364
*xdat = (FFTSample)tmp; \
365
} \
366
} else { \
367
FFTSample s, max, ti, si; \
368
int i; \
369
\
370
for (; src < src_end; xdat++) { \
371
tmp = *(const scalar_type *)src; \
372
src += sizeof(scalar_type); \
373
\
374
max = (FFTSample)tmp; \
375
s = FFMIN((FFTSample)scalar_max, \
376
(FFTSample)fabsf(max)); \
377
\
378
for (i = 1; i < atempo->channels; i++) { \
379
tmp = *(const scalar_type *)src; \
380
src += sizeof(scalar_type); \
381
\
382
ti = (FFTSample)tmp; \
383
si = FFMIN((FFTSample)scalar_max, \
384
(FFTSample)fabsf(ti)); \
385
\
386
if (s < si) { \
387
s = si; \
388
max = ti; \
389
} \
390
} \
391
\
392
*xdat = max; \
393
} \
394
} \
395
} while (0)
396
397
/**
398
* Initialize complex data buffer of a given audio fragment
399
* with down-mixed mono data of appropriate scalar type.
400
*/
401
static void yae_downmix(ATempoContext *atempo, AudioFragment *frag)
402
{
403
// shortcuts:
404
const uint8_t *src = frag->data;
405
406
// init complex data buffer used for FFT and Correlation:
407
memset(frag->xdat, 0, sizeof(FFTComplex) * atempo->window);
408
409
if (atempo->format == AV_SAMPLE_FMT_U8) {
410
yae_init_xdat(uint8_t, 127);
411
} else if (atempo->format == AV_SAMPLE_FMT_S16) {
412
yae_init_xdat(int16_t, 32767);
413
} else if (atempo->format == AV_SAMPLE_FMT_S32) {
414
yae_init_xdat(int, 2147483647);
415
} else if (atempo->format == AV_SAMPLE_FMT_FLT) {
416
yae_init_xdat(float, 1);
417
} else if (atempo->format == AV_SAMPLE_FMT_DBL) {
418
yae_init_xdat(double, 1);
419
}
420
}
421
422
/**
423
* Populate the internal data buffer on as-needed basis.
424
*
425
* @return
426
* 0 if requested data was already available or was successfully loaded,
427
* AVERROR(EAGAIN) if more input data is required.
428
*/
429
static int yae_load_data(ATempoContext *atempo,
430
const uint8_t **src_ref,
431
const uint8_t *src_end,
432
int64_t stop_here)
433
{
434
// shortcut:
435
const uint8_t *src = *src_ref;
436
const int read_size = stop_here - atempo->position[0];
437
438
if (stop_here <= atempo->position[0]) {
439
return 0;
440
}
441
442
// samples are not expected to be skipped:
443
av_assert0(read_size <= atempo->ring);
444
445
while (atempo->position[0] < stop_here && src < src_end) {
446
int src_samples = (src_end - src) / atempo->stride;
447
448
// load data piece-wise, in order to avoid complicating the logic:
449
int nsamples = FFMIN(read_size, src_samples);
450
int na;
451
int nb;
452
453
nsamples = FFMIN(nsamples, atempo->ring);
454
na = FFMIN(nsamples, atempo->ring - atempo->tail);
455
nb = FFMIN(nsamples - na, atempo->ring);
456
457
if (na) {
458
uint8_t *a = atempo->buffer + atempo->tail * atempo->stride;
459
memcpy(a, src, na * atempo->stride);
460
461
src += na * atempo->stride;
462
atempo->position[0] += na;
463
464
atempo->size = FFMIN(atempo->size + na, atempo->ring);
465
atempo->tail = (atempo->tail + na) % atempo->ring;
466
atempo->head =
467
atempo->size < atempo->ring ?
468
atempo->tail - atempo->size :
469
atempo->tail;
470
}
471
472
if (nb) {
473
uint8_t *b = atempo->buffer;
474
memcpy(b, src, nb * atempo->stride);
475
476
src += nb * atempo->stride;
477
atempo->position[0] += nb;
478
479
atempo->size = FFMIN(atempo->size + nb, atempo->ring);
480
atempo->tail = (atempo->tail + nb) % atempo->ring;
481
atempo->head =
482
atempo->size < atempo->ring ?
483
atempo->tail - atempo->size :
484
atempo->tail;
485
}
486
}
487
488
// pass back the updated source buffer pointer:
489
*src_ref = src;
490
491
// sanity check:
492
av_assert0(atempo->position[0] <= stop_here);
493
494
return atempo->position[0] == stop_here ? 0 : AVERROR(EAGAIN);
495
}
496
497
/**
498
* Populate current audio fragment data buffer.
499
*
500
* @return
501
* 0 when the fragment is ready,
502
* AVERROR(EAGAIN) if more input data is required.
503
*/
504
static int yae_load_frag(ATempoContext *atempo,
505
const uint8_t **src_ref,
506
const uint8_t *src_end)
507
{
508
// shortcuts:
509
AudioFragment *frag = yae_curr_frag(atempo);
510
uint8_t *dst;
511
int64_t missing, start, zeros;
512
uint32_t nsamples;
513
const uint8_t *a, *b;
514
int i0, i1, n0, n1, na, nb;
515
516
int64_t stop_here = frag->position[0] + atempo->window;
517
if (src_ref && yae_load_data(atempo, src_ref, src_end, stop_here) != 0) {
518
return AVERROR(EAGAIN);
519
}
520
521
// calculate the number of samples we don't have:
522
missing =
523
stop_here > atempo->position[0] ?
524
stop_here - atempo->position[0] : 0;
525
526
nsamples =
527
missing < (int64_t)atempo->window ?
528
(uint32_t)(atempo->window - missing) : 0;
529
530
// setup the output buffer:
531
frag->nsamples = nsamples;
532
dst = frag->data;
533
534
start = atempo->position[0] - atempo->size;
535
zeros = 0;
536
537
if (frag->position[0] < start) {
538
// what we don't have we substitute with zeros:
539
zeros = FFMIN(start - frag->position[0], (int64_t)nsamples);
540
av_assert0(zeros != nsamples);
541
542
memset(dst, 0, zeros * atempo->stride);
543
dst += zeros * atempo->stride;
544
}
545
546
if (zeros == nsamples) {
547
return 0;
548
}
549
550
// get the remaining data from the ring buffer:
551
na = (atempo->head < atempo->tail ?
552
atempo->tail - atempo->head :
553
atempo->ring - atempo->head);
554
555
nb = atempo->head < atempo->tail ? 0 : atempo->tail;
556
557
// sanity check:
558
av_assert0(nsamples <= zeros + na + nb);
559
560
a = atempo->buffer + atempo->head * atempo->stride;
561
b = atempo->buffer;
562
563
i0 = frag->position[0] + zeros - start;
564
i1 = i0 < na ? 0 : i0 - na;
565
566
n0 = i0 < na ? FFMIN(na - i0, (int)(nsamples - zeros)) : 0;
567
n1 = nsamples - zeros - n0;
568
569
if (n0) {
570
memcpy(dst, a + i0 * atempo->stride, n0 * atempo->stride);
571
dst += n0 * atempo->stride;
572
}
573
574
if (n1) {
575
memcpy(dst, b + i1 * atempo->stride, n1 * atempo->stride);
576
}
577
578
return 0;
579
}
580
581
/**
582
* Prepare for loading next audio fragment.
583
*/
584
static void yae_advance_to_next_frag(ATempoContext *atempo)
585
{
586
const double fragment_step = atempo->tempo * (double)(atempo->window / 2);
587
588
const AudioFragment *prev;
589
AudioFragment *frag;
590
591
atempo->nfrag++;
592
prev = yae_prev_frag(atempo);
593
frag = yae_curr_frag(atempo);
594
595
frag->position[0] = prev->position[0] + (int64_t)fragment_step;
596
frag->position[1] = prev->position[1] + atempo->window / 2;
597
frag->nsamples = 0;
598
}
599
600
/**
601
* Calculate cross-correlation via rDFT.
602
*
603
* Multiply two vectors of complex numbers (result of real_to_complex rDFT)
604
* and transform back via complex_to_real rDFT.
605
*/
606
static void yae_xcorr_via_rdft(FFTSample *xcorr,
607
RDFTContext *complex_to_real,
608
const FFTComplex *xa,
609
const FFTComplex *xb,
610
const int window)
611
{
612
FFTComplex *xc = (FFTComplex *)xcorr;
613
int i;
614
615
// NOTE: first element requires special care -- Given Y = rDFT(X),
616
// Im(Y[0]) and Im(Y[N/2]) are always zero, therefore av_rdft_calc
617
// stores Re(Y[N/2]) in place of Im(Y[0]).
618
619
xc->re = xa->re * xb->re;
620
xc->im = xa->im * xb->im;
621
xa++;
622
xb++;
623
xc++;
624
625
for (i = 1; i < window; i++, xa++, xb++, xc++) {
626
xc->re = (xa->re * xb->re + xa->im * xb->im);
627
xc->im = (xa->im * xb->re - xa->re * xb->im);
628
}
629
630
// apply inverse rDFT:
631
av_rdft_calc(complex_to_real, xcorr);
632
}
633
634
/**
635
* Calculate alignment offset for given fragment
636
* relative to the previous fragment.
637
*
638
* @return alignment offset of current fragment relative to previous.
639
*/
640
static int yae_align(AudioFragment *frag,
641
const AudioFragment *prev,
642
const int window,
643
const int delta_max,
644
const int drift,
645
FFTSample *correlation,
646
RDFTContext *complex_to_real)
647
{
648
int best_offset = -drift;
649
FFTSample best_metric = -FLT_MAX;
650
FFTSample *xcorr;
651
652
int i0;
653
int i1;
654
int i;
655
656
yae_xcorr_via_rdft(correlation,
657
complex_to_real,
658
(const FFTComplex *)prev->xdat,
659
(const FFTComplex *)frag->xdat,
660
window);
661
662
// identify search window boundaries:
663
i0 = FFMAX(window / 2 - delta_max - drift, 0);
664
i0 = FFMIN(i0, window);
665
666
i1 = FFMIN(window / 2 + delta_max - drift, window - window / 16);
667
i1 = FFMAX(i1, 0);
668
669
// identify cross-correlation peaks within search window:
670
xcorr = correlation + i0;
671
672
for (i = i0; i < i1; i++, xcorr++) {
673
FFTSample metric = *xcorr;
674
675
// normalize:
676
FFTSample drifti = (FFTSample)(drift + i);
677
metric *= drifti * (FFTSample)(i - i0) * (FFTSample)(i1 - i);
678
679
if (metric > best_metric) {
680
best_metric = metric;
681
best_offset = i - window / 2;
682
}
683
}
684
685
return best_offset;
686
}
687
688
/**
689
* Adjust current fragment position for better alignment
690
* with previous fragment.
691
*
692
* @return alignment correction.
693
*/
694
static int yae_adjust_position(ATempoContext *atempo)
695
{
696
const AudioFragment *prev = yae_prev_frag(atempo);
697
AudioFragment *frag = yae_curr_frag(atempo);
698
699
const double prev_output_position =
700
(double)(prev->position[1] - atempo->origin[1] + atempo->window / 2);
701
702
const double ideal_output_position =
703
(double)(prev->position[0] - atempo->origin[0] + atempo->window / 2) /
704
atempo->tempo;
705
706
const int drift = (int)(prev_output_position - ideal_output_position);
707
708
const int delta_max = atempo->window / 2;
709
const int correction = yae_align(frag,
710
prev,
711
atempo->window,
712
delta_max,
713
drift,
714
atempo->correlation,
715
atempo->complex_to_real);
716
717
if (correction) {
718
// adjust fragment position:
719
frag->position[0] -= correction;
720
721
// clear so that the fragment can be reloaded:
722
frag->nsamples = 0;
723
}
724
725
return correction;
726
}
727
728
/**
729
* A helper macro for blending the overlap region of previous
730
* and current audio fragment.
731
*/
732
#define yae_blend(scalar_type) \
733
do { \
734
const scalar_type *aaa = (const scalar_type *)a; \
735
const scalar_type *bbb = (const scalar_type *)b; \
736
\
737
scalar_type *out = (scalar_type *)dst; \
738
scalar_type *out_end = (scalar_type *)dst_end; \
739
int64_t i; \
740
\
741
for (i = 0; i < overlap && out < out_end; \
742
i++, atempo->position[1]++, wa++, wb++) { \
743
float w0 = *wa; \
744
float w1 = *wb; \
745
int j; \
746
\
747
for (j = 0; j < atempo->channels; \
748
j++, aaa++, bbb++, out++) { \
749
float t0 = (float)*aaa; \
750
float t1 = (float)*bbb; \
751
\
752
*out = \
753
frag->position[0] + i < 0 ? \
754
*aaa : \
755
(scalar_type)(t0 * w0 + t1 * w1); \
756
} \
757
} \
758
dst = (uint8_t *)out; \
759
} while (0)
760
761
/**
762
* Blend the overlap region of previous and current audio fragment
763
* and output the results to the given destination buffer.
764
*
765
* @return
766
* 0 if the overlap region was completely stored in the dst buffer,
767
* AVERROR(EAGAIN) if more destination buffer space is required.
768
*/
769
static int yae_overlap_add(ATempoContext *atempo,
770
uint8_t **dst_ref,
771
uint8_t *dst_end)
772
{
773
// shortcuts:
774
const AudioFragment *prev = yae_prev_frag(atempo);
775
const AudioFragment *frag = yae_curr_frag(atempo);
776
777
const int64_t start_here = FFMAX(atempo->position[1],
778
frag->position[1]);
779
780
const int64_t stop_here = FFMIN(prev->position[1] + prev->nsamples,
781
frag->position[1] + frag->nsamples);
782
783
const int64_t overlap = stop_here - start_here;
784
785
const int64_t ia = start_here - prev->position[1];
786
const int64_t ib = start_here - frag->position[1];
787
788
const float *wa = atempo->hann + ia;
789
const float *wb = atempo->hann + ib;
790
791
const uint8_t *a = prev->data + ia * atempo->stride;
792
const uint8_t *b = frag->data + ib * atempo->stride;
793
794
uint8_t *dst = *dst_ref;
795
796
av_assert0(start_here <= stop_here &&
797
frag->position[1] <= start_here &&
798
overlap <= frag->nsamples);
799
800
if (atempo->format == AV_SAMPLE_FMT_U8) {
801
yae_blend(uint8_t);
802
} else if (atempo->format == AV_SAMPLE_FMT_S16) {
803
yae_blend(int16_t);
804
} else if (atempo->format == AV_SAMPLE_FMT_S32) {
805
yae_blend(int);
806
} else if (atempo->format == AV_SAMPLE_FMT_FLT) {
807
yae_blend(float);
808
} else if (atempo->format == AV_SAMPLE_FMT_DBL) {
809
yae_blend(double);
810
}
811
812
// pass-back the updated destination buffer pointer:
813
*dst_ref = dst;
814
815
return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN);
816
}
817
818
/**
819
* Feed as much data to the filter as it is able to consume
820
* and receive as much processed data in the destination buffer
821
* as it is able to produce or store.
822
*/
823
static void
824
yae_apply(ATempoContext *atempo,
825
const uint8_t **src_ref,
826
const uint8_t *src_end,
827
uint8_t **dst_ref,
828
uint8_t *dst_end)
829
{
830
while (1) {
831
if (atempo->state == YAE_LOAD_FRAGMENT) {
832
// load additional data for the current fragment:
833
if (yae_load_frag(atempo, src_ref, src_end) != 0) {
834
break;
835
}
836
837
// down-mix to mono:
838
yae_downmix(atempo, yae_curr_frag(atempo));
839
840
// apply rDFT:
841
av_rdft_calc(atempo->real_to_complex, yae_curr_frag(atempo)->xdat);
842
843
// must load the second fragment before alignment can start:
844
if (!atempo->nfrag) {
845
yae_advance_to_next_frag(atempo);
846
continue;
847
}
848
849
atempo->state = YAE_ADJUST_POSITION;
850
}
851
852
if (atempo->state == YAE_ADJUST_POSITION) {
853
// adjust position for better alignment:
854
if (yae_adjust_position(atempo)) {
855
// reload the fragment at the corrected position, so that the
856
// Hann window blending would not require normalization:
857
atempo->state = YAE_RELOAD_FRAGMENT;
858
} else {
859
atempo->state = YAE_OUTPUT_OVERLAP_ADD;
860
}
861
}
862
863
if (atempo->state == YAE_RELOAD_FRAGMENT) {
864
// load additional data if necessary due to position adjustment:
865
if (yae_load_frag(atempo, src_ref, src_end) != 0) {
866
break;
867
}
868
869
// down-mix to mono:
870
yae_downmix(atempo, yae_curr_frag(atempo));
871
872
// apply rDFT:
873
av_rdft_calc(atempo->real_to_complex, yae_curr_frag(atempo)->xdat);
874
875
atempo->state = YAE_OUTPUT_OVERLAP_ADD;
876
}
877
878
if (atempo->state == YAE_OUTPUT_OVERLAP_ADD) {
879
// overlap-add and output the result:
880
if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) {
881
break;
882
}
883
884
// advance to the next fragment, repeat:
885
yae_advance_to_next_frag(atempo);
886
atempo->state = YAE_LOAD_FRAGMENT;
887
}
888
}
889
}
890
891
/**
892
* Flush any buffered data from the filter.
893
*
894
* @return
895
* 0 if all data was completely stored in the dst buffer,
896
* AVERROR(EAGAIN) if more destination buffer space is required.
897
*/
898
static int yae_flush(ATempoContext *atempo,
899
uint8_t **dst_ref,
900
uint8_t *dst_end)
901
{
902
AudioFragment *frag = yae_curr_frag(atempo);
903
int64_t overlap_end;
904
int64_t start_here;
905
int64_t stop_here;
906
int64_t offset;
907
908
const uint8_t *src;
909
uint8_t *dst;
910
911
int src_size;
912
int dst_size;
913
int nbytes;
914
915
atempo->state = YAE_FLUSH_OUTPUT;
916
917
if (atempo->position[0] == frag->position[0] + frag->nsamples &&
918
atempo->position[1] == frag->position[1] + frag->nsamples) {
919
// the current fragment is already flushed:
920
return 0;
921
}
922
923
if (frag->position[0] + frag->nsamples < atempo->position[0]) {
924
// finish loading the current (possibly partial) fragment:
925
yae_load_frag(atempo, NULL, NULL);
926
927
if (atempo->nfrag) {
928
// down-mix to mono:
929
yae_downmix(atempo, frag);
930
931
// apply rDFT:
932
av_rdft_calc(atempo->real_to_complex, frag->xdat);
933
934
// align current fragment to previous fragment:
935
if (yae_adjust_position(atempo)) {
936
// reload the current fragment due to adjusted position:
937
yae_load_frag(atempo, NULL, NULL);
938
}
939
}
940
}
941
942
// flush the overlap region:
943
overlap_end = frag->position[1] + FFMIN(atempo->window / 2,
944
frag->nsamples);
945
946
while (atempo->position[1] < overlap_end) {
947
if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) {
948
return AVERROR(EAGAIN);
949
}
950
}
951
952
// check whether all of the input samples have been consumed:
953
if (frag->position[0] + frag->nsamples < atempo->position[0]) {
954
yae_advance_to_next_frag(atempo);
955
return AVERROR(EAGAIN);
956
}
957
958
// flush the remainder of the current fragment:
959
start_here = FFMAX(atempo->position[1], overlap_end);
960
stop_here = frag->position[1] + frag->nsamples;
961
offset = start_here - frag->position[1];
962
av_assert0(start_here <= stop_here && frag->position[1] <= start_here);
963
964
src = frag->data + offset * atempo->stride;
965
dst = (uint8_t *)*dst_ref;
966
967
src_size = (int)(stop_here - start_here) * atempo->stride;
968
dst_size = dst_end - dst;
969
nbytes = FFMIN(src_size, dst_size);
970
971
memcpy(dst, src, nbytes);
972
dst += nbytes;
973
974
atempo->position[1] += (nbytes / atempo->stride);
975
976
// pass-back the updated destination buffer pointer:
977
*dst_ref = (uint8_t *)dst;
978
979
return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN);
980
}
981
982
static av_cold int init(AVFilterContext *ctx)
983
{
984
ATempoContext *atempo = ctx->priv;
985
atempo->format = AV_SAMPLE_FMT_NONE;
986
atempo->state = YAE_LOAD_FRAGMENT;
987
return 0;
988
}
989
990
static av_cold void uninit(AVFilterContext *ctx)
991
{
992
ATempoContext *atempo = ctx->priv;
993
yae_release_buffers(atempo);
994
}
995
996
static int query_formats(AVFilterContext *ctx)
997
{
998
AVFilterChannelLayouts *layouts = NULL;
999
AVFilterFormats *formats = NULL;
1000
1001
// WSOLA necessitates an internal sliding window ring buffer
1002
// for incoming audio stream.
1003
//
1004
// Planar sample formats are too cumbersome to store in a ring buffer,
1005
// therefore planar sample formats are not supported.
1006
//
1007
static const enum AVSampleFormat sample_fmts[] = {
1008
AV_SAMPLE_FMT_U8,
1009
AV_SAMPLE_FMT_S16,
1010
AV_SAMPLE_FMT_S32,
1011
AV_SAMPLE_FMT_FLT,
1012
AV_SAMPLE_FMT_DBL,
1013
AV_SAMPLE_FMT_NONE
1014
};
1015
int ret;
1016
1017
layouts = ff_all_channel_layouts();
1018
if (!layouts) {
1019
return AVERROR(ENOMEM);
1020
}
1021
ret = ff_set_common_channel_layouts(ctx, layouts);
1022
if (ret < 0)
1023
return ret;
1024
1025
formats = ff_make_format_list(sample_fmts);
1026
if (!formats) {
1027
return AVERROR(ENOMEM);
1028
}
1029
ret = ff_set_common_formats(ctx, formats);
1030
if (ret < 0)
1031
return ret;
1032
1033
formats = ff_all_samplerates();
1034
if (!formats) {
1035
return AVERROR(ENOMEM);
1036
}
1037
return ff_set_common_samplerates(ctx, formats);
1038
}
1039
1040
static int config_props(AVFilterLink *inlink)
1041
{
1042
AVFilterContext *ctx = inlink->dst;
1043
ATempoContext *atempo = ctx->priv;
1044
1045
enum AVSampleFormat format = inlink->format;
1046
int sample_rate = (int)inlink->sample_rate;
1047
int channels = av_get_channel_layout_nb_channels(inlink->channel_layout);
1048
1049
return yae_reset(atempo, format, sample_rate, channels);
1050
}
1051
1052
static int push_samples(ATempoContext *atempo,
1053
AVFilterLink *outlink,
1054
int n_out)
1055
{
1056
int ret;
1057
1058
atempo->dst_buffer->sample_rate = outlink->sample_rate;
1059
atempo->dst_buffer->nb_samples = n_out;
1060
1061
// adjust the PTS:
1062
atempo->dst_buffer->pts =
1063
av_rescale_q(atempo->nsamples_out,
1064
(AVRational){ 1, outlink->sample_rate },
1065
outlink->time_base);
1066
1067
ret = ff_filter_frame(outlink, atempo->dst_buffer);
1068
atempo->dst_buffer = NULL;
1069
atempo->dst = NULL;
1070
atempo->dst_end = NULL;
1071
if (ret < 0)
1072
return ret;
1073
1074
atempo->nsamples_out += n_out;
1075
return 0;
1076
}
1077
1078
static int filter_frame(AVFilterLink *inlink, AVFrame *src_buffer)
1079
{
1080
AVFilterContext *ctx = inlink->dst;
1081
ATempoContext *atempo = ctx->priv;
1082
AVFilterLink *outlink = ctx->outputs[0];
1083
1084
int ret = 0;
1085
int n_in = src_buffer->nb_samples;
1086
int n_out = (int)(0.5 + ((double)n_in) / atempo->tempo);
1087
1088
const uint8_t *src = src_buffer->data[0];
1089
const uint8_t *src_end = src + n_in * atempo->stride;
1090
1091
while (src < src_end) {
1092
if (!atempo->dst_buffer) {
1093
atempo->dst_buffer = ff_get_audio_buffer(outlink, n_out);
1094
if (!atempo->dst_buffer)
1095
return AVERROR(ENOMEM);
1096
av_frame_copy_props(atempo->dst_buffer, src_buffer);
1097
1098
atempo->dst = atempo->dst_buffer->data[0];
1099
atempo->dst_end = atempo->dst + n_out * atempo->stride;
1100
}
1101
1102
yae_apply(atempo, &src, src_end, &atempo->dst, atempo->dst_end);
1103
1104
if (atempo->dst == atempo->dst_end) {
1105
int n_samples = ((atempo->dst - atempo->dst_buffer->data[0]) /
1106
atempo->stride);
1107
ret = push_samples(atempo, outlink, n_samples);
1108
if (ret < 0)
1109
goto end;
1110
}
1111
}
1112
1113
atempo->nsamples_in += n_in;
1114
end:
1115
av_frame_free(&src_buffer);
1116
return ret;
1117
}
1118
1119
static int request_frame(AVFilterLink *outlink)
1120
{
1121
AVFilterContext *ctx = outlink->src;
1122
ATempoContext *atempo = ctx->priv;
1123
int ret;
1124
1125
ret = ff_request_frame(ctx->inputs[0]);
1126
1127
if (ret == AVERROR_EOF) {
1128
// flush the filter:
1129
int n_max = atempo->ring;
1130
int n_out;
1131
int err = AVERROR(EAGAIN);
1132
1133
while (err == AVERROR(EAGAIN)) {
1134
if (!atempo->dst_buffer) {
1135
atempo->dst_buffer = ff_get_audio_buffer(outlink, n_max);
1136
if (!atempo->dst_buffer)
1137
return AVERROR(ENOMEM);
1138
1139
atempo->dst = atempo->dst_buffer->data[0];
1140
atempo->dst_end = atempo->dst + n_max * atempo->stride;
1141
}
1142
1143
err = yae_flush(atempo, &atempo->dst, atempo->dst_end);
1144
1145
n_out = ((atempo->dst - atempo->dst_buffer->data[0]) /
1146
atempo->stride);
1147
1148
if (n_out) {
1149
ret = push_samples(atempo, outlink, n_out);
1150
}
1151
}
1152
1153
av_frame_free(&atempo->dst_buffer);
1154
atempo->dst = NULL;
1155
atempo->dst_end = NULL;
1156
1157
return AVERROR_EOF;
1158
}
1159
1160
return ret;
1161
}
1162
1163
static int process_command(AVFilterContext *ctx,
1164
const char *cmd,
1165
const char *arg,
1166
char *res,
1167
int res_len,
1168
int flags)
1169
{
1170
return !strcmp(cmd, "tempo") ? yae_set_tempo(ctx, arg) : AVERROR(ENOSYS);
1171
}
1172
1173
static const AVFilterPad atempo_inputs[] = {
1174
{
1175
.name = "default",
1176
.type = AVMEDIA_TYPE_AUDIO,
1177
.filter_frame = filter_frame,
1178
.config_props = config_props,
1179
},
1180
{ NULL }
1181
};
1182
1183
static const AVFilterPad atempo_outputs[] = {
1184
{
1185
.name = "default",
1186
.request_frame = request_frame,
1187
.type = AVMEDIA_TYPE_AUDIO,
1188
},
1189
{ NULL }
1190
};
1191
1192
AVFilter ff_af_atempo = {
1193
.name = "atempo",
1194
.description = NULL_IF_CONFIG_SMALL("Adjust audio tempo."),
1195
.init = init,
1196
.uninit = uninit,
1197
.query_formats = query_formats,
1198
.process_command = process_command,
1199
.priv_size = sizeof(ATempoContext),
1200
.priv_class = &atempo_class,
1201
.inputs = atempo_inputs,
1202
.outputs = atempo_outputs,
1203
};
1204
1205