Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52867 views
1
/*
2
* Dynamic Audio Normalizer
3
* Copyright (c) 2015 LoRd_MuldeR <[email protected]>. Some rights reserved.
4
*
5
* This file is part of FFmpeg.
6
*
7
* FFmpeg is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU Lesser General Public
9
* License as published by the Free Software Foundation; either
10
* version 2.1 of the License, or (at your option) any later version.
11
*
12
* FFmpeg is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15
* Lesser General Public License for more details.
16
*
17
* You should have received a copy of the GNU Lesser General Public
18
* License along with FFmpeg; if not, write to the Free Software
19
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
*/
21
22
/**
23
* @file
24
* Dynamic Audio Normalizer
25
*/
26
27
#include <float.h>
28
29
#include "libavutil/avassert.h"
30
#include "libavutil/opt.h"
31
32
#define FF_BUFQUEUE_SIZE 302
33
#include "libavfilter/bufferqueue.h"
34
35
#include "audio.h"
36
#include "avfilter.h"
37
#include "internal.h"
38
39
typedef struct cqueue {
40
double *elements;
41
int size;
42
int nb_elements;
43
int first;
44
} cqueue;
45
46
typedef struct DynamicAudioNormalizerContext {
47
const AVClass *class;
48
49
struct FFBufQueue queue;
50
51
int frame_len;
52
int frame_len_msec;
53
int filter_size;
54
int dc_correction;
55
int channels_coupled;
56
int alt_boundary_mode;
57
58
double peak_value;
59
double max_amplification;
60
double target_rms;
61
double compress_factor;
62
double *prev_amplification_factor;
63
double *dc_correction_value;
64
double *compress_threshold;
65
double *fade_factors[2];
66
double *weights;
67
68
int channels;
69
int delay;
70
71
cqueue **gain_history_original;
72
cqueue **gain_history_minimum;
73
cqueue **gain_history_smoothed;
74
} DynamicAudioNormalizerContext;
75
76
#define OFFSET(x) offsetof(DynamicAudioNormalizerContext, x)
77
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
78
79
static const AVOption dynaudnorm_options[] = {
80
{ "f", "set the frame length in msec", OFFSET(frame_len_msec), AV_OPT_TYPE_INT, {.i64 = 500}, 10, 8000, FLAGS },
81
{ "g", "set the filter size", OFFSET(filter_size), AV_OPT_TYPE_INT, {.i64 = 31}, 3, 301, FLAGS },
82
{ "p", "set the peak value", OFFSET(peak_value), AV_OPT_TYPE_DOUBLE, {.dbl = 0.95}, 0.0, 1.0, FLAGS },
83
{ "m", "set the max amplification", OFFSET(max_amplification), AV_OPT_TYPE_DOUBLE, {.dbl = 10.0}, 1.0, 100.0, FLAGS },
84
{ "r", "set the target RMS", OFFSET(target_rms), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 1.0, FLAGS },
85
{ "n", "set channel coupling", OFFSET(channels_coupled), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS },
86
{ "c", "set DC correction", OFFSET(dc_correction), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
87
{ "b", "set alternative boundary mode", OFFSET(alt_boundary_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
88
{ "s", "set the compress factor", OFFSET(compress_factor), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 30.0, FLAGS },
89
{ NULL }
90
};
91
92
AVFILTER_DEFINE_CLASS(dynaudnorm);
93
94
static av_cold int init(AVFilterContext *ctx)
95
{
96
DynamicAudioNormalizerContext *s = ctx->priv;
97
98
if (!(s->filter_size & 1)) {
99
av_log(ctx, AV_LOG_ERROR, "filter size %d is invalid. Must be an odd value.\n", s->filter_size);
100
return AVERROR(EINVAL);
101
}
102
103
return 0;
104
}
105
106
static int query_formats(AVFilterContext *ctx)
107
{
108
AVFilterFormats *formats;
109
AVFilterChannelLayouts *layouts;
110
static const enum AVSampleFormat sample_fmts[] = {
111
AV_SAMPLE_FMT_DBLP,
112
AV_SAMPLE_FMT_NONE
113
};
114
int ret;
115
116
layouts = ff_all_channel_counts();
117
if (!layouts)
118
return AVERROR(ENOMEM);
119
ret = ff_set_common_channel_layouts(ctx, layouts);
120
if (ret < 0)
121
return ret;
122
123
formats = ff_make_format_list(sample_fmts);
124
if (!formats)
125
return AVERROR(ENOMEM);
126
ret = ff_set_common_formats(ctx, formats);
127
if (ret < 0)
128
return ret;
129
130
formats = ff_all_samplerates();
131
if (!formats)
132
return AVERROR(ENOMEM);
133
return ff_set_common_samplerates(ctx, formats);
134
}
135
136
static inline int frame_size(int sample_rate, int frame_len_msec)
137
{
138
const int frame_size = lrint((double)sample_rate * (frame_len_msec / 1000.0));
139
return frame_size + (frame_size % 2);
140
}
141
142
static void precalculate_fade_factors(double *fade_factors[2], int frame_len)
143
{
144
const double step_size = 1.0 / frame_len;
145
int pos;
146
147
for (pos = 0; pos < frame_len; pos++) {
148
fade_factors[0][pos] = 1.0 - (step_size * (pos + 1.0));
149
fade_factors[1][pos] = 1.0 - fade_factors[0][pos];
150
}
151
}
152
153
static cqueue *cqueue_create(int size)
154
{
155
cqueue *q;
156
157
q = av_malloc(sizeof(cqueue));
158
if (!q)
159
return NULL;
160
161
q->size = size;
162
q->nb_elements = 0;
163
q->first = 0;
164
165
q->elements = av_malloc_array(size, sizeof(double));
166
if (!q->elements) {
167
av_free(q);
168
return NULL;
169
}
170
171
return q;
172
}
173
174
static void cqueue_free(cqueue *q)
175
{
176
if (q)
177
av_free(q->elements);
178
av_free(q);
179
}
180
181
static int cqueue_size(cqueue *q)
182
{
183
return q->nb_elements;
184
}
185
186
static int cqueue_empty(cqueue *q)
187
{
188
return !q->nb_elements;
189
}
190
191
static int cqueue_enqueue(cqueue *q, double element)
192
{
193
int i;
194
195
av_assert2(q->nb_elements != q->size);
196
197
i = (q->first + q->nb_elements) % q->size;
198
q->elements[i] = element;
199
q->nb_elements++;
200
201
return 0;
202
}
203
204
static double cqueue_peek(cqueue *q, int index)
205
{
206
av_assert2(index < q->nb_elements);
207
return q->elements[(q->first + index) % q->size];
208
}
209
210
static int cqueue_dequeue(cqueue *q, double *element)
211
{
212
av_assert2(!cqueue_empty(q));
213
214
*element = q->elements[q->first];
215
q->first = (q->first + 1) % q->size;
216
q->nb_elements--;
217
218
return 0;
219
}
220
221
static int cqueue_pop(cqueue *q)
222
{
223
av_assert2(!cqueue_empty(q));
224
225
q->first = (q->first + 1) % q->size;
226
q->nb_elements--;
227
228
return 0;
229
}
230
231
static void init_gaussian_filter(DynamicAudioNormalizerContext *s)
232
{
233
double total_weight = 0.0;
234
const double sigma = (((s->filter_size / 2.0) - 1.0) / 3.0) + (1.0 / 3.0);
235
double adjust;
236
int i;
237
238
// Pre-compute constants
239
const int offset = s->filter_size / 2;
240
const double c1 = 1.0 / (sigma * sqrt(2.0 * M_PI));
241
const double c2 = 2.0 * sigma * sigma;
242
243
// Compute weights
244
for (i = 0; i < s->filter_size; i++) {
245
const int x = i - offset;
246
247
s->weights[i] = c1 * exp(-x * x / c2);
248
total_weight += s->weights[i];
249
}
250
251
// Adjust weights
252
adjust = 1.0 / total_weight;
253
for (i = 0; i < s->filter_size; i++) {
254
s->weights[i] *= adjust;
255
}
256
}
257
258
static av_cold void uninit(AVFilterContext *ctx)
259
{
260
DynamicAudioNormalizerContext *s = ctx->priv;
261
int c;
262
263
av_freep(&s->prev_amplification_factor);
264
av_freep(&s->dc_correction_value);
265
av_freep(&s->compress_threshold);
266
av_freep(&s->fade_factors[0]);
267
av_freep(&s->fade_factors[1]);
268
269
for (c = 0; c < s->channels; c++) {
270
if (s->gain_history_original)
271
cqueue_free(s->gain_history_original[c]);
272
if (s->gain_history_minimum)
273
cqueue_free(s->gain_history_minimum[c]);
274
if (s->gain_history_smoothed)
275
cqueue_free(s->gain_history_smoothed[c]);
276
}
277
278
av_freep(&s->gain_history_original);
279
av_freep(&s->gain_history_minimum);
280
av_freep(&s->gain_history_smoothed);
281
282
av_freep(&s->weights);
283
284
ff_bufqueue_discard_all(&s->queue);
285
}
286
287
static int config_input(AVFilterLink *inlink)
288
{
289
AVFilterContext *ctx = inlink->dst;
290
DynamicAudioNormalizerContext *s = ctx->priv;
291
int c;
292
293
uninit(ctx);
294
295
s->frame_len =
296
inlink->min_samples =
297
inlink->max_samples =
298
inlink->partial_buf_size = frame_size(inlink->sample_rate, s->frame_len_msec);
299
av_log(ctx, AV_LOG_DEBUG, "frame len %d\n", s->frame_len);
300
301
s->fade_factors[0] = av_malloc_array(s->frame_len, sizeof(*s->fade_factors[0]));
302
s->fade_factors[1] = av_malloc_array(s->frame_len, sizeof(*s->fade_factors[1]));
303
304
s->prev_amplification_factor = av_malloc_array(inlink->channels, sizeof(*s->prev_amplification_factor));
305
s->dc_correction_value = av_calloc(inlink->channels, sizeof(*s->dc_correction_value));
306
s->compress_threshold = av_calloc(inlink->channels, sizeof(*s->compress_threshold));
307
s->gain_history_original = av_calloc(inlink->channels, sizeof(*s->gain_history_original));
308
s->gain_history_minimum = av_calloc(inlink->channels, sizeof(*s->gain_history_minimum));
309
s->gain_history_smoothed = av_calloc(inlink->channels, sizeof(*s->gain_history_smoothed));
310
s->weights = av_malloc_array(s->filter_size, sizeof(*s->weights));
311
if (!s->prev_amplification_factor || !s->dc_correction_value ||
312
!s->compress_threshold || !s->fade_factors[0] || !s->fade_factors[1] ||
313
!s->gain_history_original || !s->gain_history_minimum ||
314
!s->gain_history_smoothed || !s->weights)
315
return AVERROR(ENOMEM);
316
317
for (c = 0; c < inlink->channels; c++) {
318
s->prev_amplification_factor[c] = 1.0;
319
320
s->gain_history_original[c] = cqueue_create(s->filter_size);
321
s->gain_history_minimum[c] = cqueue_create(s->filter_size);
322
s->gain_history_smoothed[c] = cqueue_create(s->filter_size);
323
324
if (!s->gain_history_original[c] || !s->gain_history_minimum[c] ||
325
!s->gain_history_smoothed[c])
326
return AVERROR(ENOMEM);
327
}
328
329
precalculate_fade_factors(s->fade_factors, s->frame_len);
330
init_gaussian_filter(s);
331
332
s->channels = inlink->channels;
333
s->delay = s->filter_size;
334
335
return 0;
336
}
337
338
static inline double fade(double prev, double next, int pos,
339
double *fade_factors[2])
340
{
341
return fade_factors[0][pos] * prev + fade_factors[1][pos] * next;
342
}
343
344
static inline double pow2(const double value)
345
{
346
return value * value;
347
}
348
349
static inline double bound(const double threshold, const double val)
350
{
351
const double CONST = 0.8862269254527580136490837416705725913987747280611935; //sqrt(PI) / 2.0
352
return erf(CONST * (val / threshold)) * threshold;
353
}
354
355
static double find_peak_magnitude(AVFrame *frame, int channel)
356
{
357
double max = DBL_EPSILON;
358
int c, i;
359
360
if (channel == -1) {
361
for (c = 0; c < av_frame_get_channels(frame); c++) {
362
double *data_ptr = (double *)frame->extended_data[c];
363
364
for (i = 0; i < frame->nb_samples; i++)
365
max = FFMAX(max, fabs(data_ptr[i]));
366
}
367
} else {
368
double *data_ptr = (double *)frame->extended_data[channel];
369
370
for (i = 0; i < frame->nb_samples; i++)
371
max = FFMAX(max, fabs(data_ptr[i]));
372
}
373
374
return max;
375
}
376
377
static double compute_frame_rms(AVFrame *frame, int channel)
378
{
379
double rms_value = 0.0;
380
int c, i;
381
382
if (channel == -1) {
383
for (c = 0; c < av_frame_get_channels(frame); c++) {
384
const double *data_ptr = (double *)frame->extended_data[c];
385
386
for (i = 0; i < frame->nb_samples; i++) {
387
rms_value += pow2(data_ptr[i]);
388
}
389
}
390
391
rms_value /= frame->nb_samples * av_frame_get_channels(frame);
392
} else {
393
const double *data_ptr = (double *)frame->extended_data[channel];
394
for (i = 0; i < frame->nb_samples; i++) {
395
rms_value += pow2(data_ptr[i]);
396
}
397
398
rms_value /= frame->nb_samples;
399
}
400
401
return FFMAX(sqrt(rms_value), DBL_EPSILON);
402
}
403
404
static double get_max_local_gain(DynamicAudioNormalizerContext *s, AVFrame *frame,
405
int channel)
406
{
407
const double maximum_gain = s->peak_value / find_peak_magnitude(frame, channel);
408
const double rms_gain = s->target_rms > DBL_EPSILON ? (s->target_rms / compute_frame_rms(frame, channel)) : DBL_MAX;
409
return bound(s->max_amplification, FFMIN(maximum_gain, rms_gain));
410
}
411
412
static double minimum_filter(cqueue *q)
413
{
414
double min = DBL_MAX;
415
int i;
416
417
for (i = 0; i < cqueue_size(q); i++) {
418
min = FFMIN(min, cqueue_peek(q, i));
419
}
420
421
return min;
422
}
423
424
static double gaussian_filter(DynamicAudioNormalizerContext *s, cqueue *q)
425
{
426
double result = 0.0;
427
int i;
428
429
for (i = 0; i < cqueue_size(q); i++) {
430
result += cqueue_peek(q, i) * s->weights[i];
431
}
432
433
return result;
434
}
435
436
static void update_gain_history(DynamicAudioNormalizerContext *s, int channel,
437
double current_gain_factor)
438
{
439
if (cqueue_empty(s->gain_history_original[channel]) ||
440
cqueue_empty(s->gain_history_minimum[channel])) {
441
const int pre_fill_size = s->filter_size / 2;
442
443
s->prev_amplification_factor[channel] = s->alt_boundary_mode ? current_gain_factor : 1.0;
444
445
while (cqueue_size(s->gain_history_original[channel]) < pre_fill_size) {
446
cqueue_enqueue(s->gain_history_original[channel], s->alt_boundary_mode ? current_gain_factor : 1.0);
447
}
448
449
while (cqueue_size(s->gain_history_minimum[channel]) < pre_fill_size) {
450
cqueue_enqueue(s->gain_history_minimum[channel], s->alt_boundary_mode ? current_gain_factor : 1.0);
451
}
452
}
453
454
cqueue_enqueue(s->gain_history_original[channel], current_gain_factor);
455
456
while (cqueue_size(s->gain_history_original[channel]) >= s->filter_size) {
457
double minimum;
458
av_assert0(cqueue_size(s->gain_history_original[channel]) == s->filter_size);
459
minimum = minimum_filter(s->gain_history_original[channel]);
460
461
cqueue_enqueue(s->gain_history_minimum[channel], minimum);
462
463
cqueue_pop(s->gain_history_original[channel]);
464
}
465
466
while (cqueue_size(s->gain_history_minimum[channel]) >= s->filter_size) {
467
double smoothed;
468
av_assert0(cqueue_size(s->gain_history_minimum[channel]) == s->filter_size);
469
smoothed = gaussian_filter(s, s->gain_history_minimum[channel]);
470
471
cqueue_enqueue(s->gain_history_smoothed[channel], smoothed);
472
473
cqueue_pop(s->gain_history_minimum[channel]);
474
}
475
}
476
477
static inline double update_value(double new, double old, double aggressiveness)
478
{
479
av_assert0((aggressiveness >= 0.0) && (aggressiveness <= 1.0));
480
return aggressiveness * new + (1.0 - aggressiveness) * old;
481
}
482
483
static void perform_dc_correction(DynamicAudioNormalizerContext *s, AVFrame *frame)
484
{
485
const double diff = 1.0 / frame->nb_samples;
486
int is_first_frame = cqueue_empty(s->gain_history_original[0]);
487
int c, i;
488
489
for (c = 0; c < s->channels; c++) {
490
double *dst_ptr = (double *)frame->extended_data[c];
491
double current_average_value = 0.0;
492
double prev_value;
493
494
for (i = 0; i < frame->nb_samples; i++)
495
current_average_value += dst_ptr[i] * diff;
496
497
prev_value = is_first_frame ? current_average_value : s->dc_correction_value[c];
498
s->dc_correction_value[c] = is_first_frame ? current_average_value : update_value(current_average_value, s->dc_correction_value[c], 0.1);
499
500
for (i = 0; i < frame->nb_samples; i++) {
501
dst_ptr[i] -= fade(prev_value, s->dc_correction_value[c], i, s->fade_factors);
502
}
503
}
504
}
505
506
static double setup_compress_thresh(double threshold)
507
{
508
if ((threshold > DBL_EPSILON) && (threshold < (1.0 - DBL_EPSILON))) {
509
double current_threshold = threshold;
510
double step_size = 1.0;
511
512
while (step_size > DBL_EPSILON) {
513
while ((current_threshold + step_size > current_threshold) &&
514
(bound(current_threshold + step_size, 1.0) <= threshold)) {
515
current_threshold += step_size;
516
}
517
518
step_size /= 2.0;
519
}
520
521
return current_threshold;
522
} else {
523
return threshold;
524
}
525
}
526
527
static double compute_frame_std_dev(DynamicAudioNormalizerContext *s,
528
AVFrame *frame, int channel)
529
{
530
double variance = 0.0;
531
int i, c;
532
533
if (channel == -1) {
534
for (c = 0; c < s->channels; c++) {
535
const double *data_ptr = (double *)frame->extended_data[c];
536
537
for (i = 0; i < frame->nb_samples; i++) {
538
variance += pow2(data_ptr[i]); // Assume that MEAN is *zero*
539
}
540
}
541
variance /= (s->channels * frame->nb_samples) - 1;
542
} else {
543
const double *data_ptr = (double *)frame->extended_data[channel];
544
545
for (i = 0; i < frame->nb_samples; i++) {
546
variance += pow2(data_ptr[i]); // Assume that MEAN is *zero*
547
}
548
variance /= frame->nb_samples - 1;
549
}
550
551
return FFMAX(sqrt(variance), DBL_EPSILON);
552
}
553
554
static void perform_compression(DynamicAudioNormalizerContext *s, AVFrame *frame)
555
{
556
int is_first_frame = cqueue_empty(s->gain_history_original[0]);
557
int c, i;
558
559
if (s->channels_coupled) {
560
const double standard_deviation = compute_frame_std_dev(s, frame, -1);
561
const double current_threshold = FFMIN(1.0, s->compress_factor * standard_deviation);
562
563
const double prev_value = is_first_frame ? current_threshold : s->compress_threshold[0];
564
double prev_actual_thresh, curr_actual_thresh;
565
s->compress_threshold[0] = is_first_frame ? current_threshold : update_value(current_threshold, s->compress_threshold[0], (1.0/3.0));
566
567
prev_actual_thresh = setup_compress_thresh(prev_value);
568
curr_actual_thresh = setup_compress_thresh(s->compress_threshold[0]);
569
570
for (c = 0; c < s->channels; c++) {
571
double *const dst_ptr = (double *)frame->extended_data[c];
572
for (i = 0; i < frame->nb_samples; i++) {
573
const double localThresh = fade(prev_actual_thresh, curr_actual_thresh, i, s->fade_factors);
574
dst_ptr[i] = copysign(bound(localThresh, fabs(dst_ptr[i])), dst_ptr[i]);
575
}
576
}
577
} else {
578
for (c = 0; c < s->channels; c++) {
579
const double standard_deviation = compute_frame_std_dev(s, frame, c);
580
const double current_threshold = setup_compress_thresh(FFMIN(1.0, s->compress_factor * standard_deviation));
581
582
const double prev_value = is_first_frame ? current_threshold : s->compress_threshold[c];
583
double prev_actual_thresh, curr_actual_thresh;
584
double *dst_ptr;
585
s->compress_threshold[c] = is_first_frame ? current_threshold : update_value(current_threshold, s->compress_threshold[c], 1.0/3.0);
586
587
prev_actual_thresh = setup_compress_thresh(prev_value);
588
curr_actual_thresh = setup_compress_thresh(s->compress_threshold[c]);
589
590
dst_ptr = (double *)frame->extended_data[c];
591
for (i = 0; i < frame->nb_samples; i++) {
592
const double localThresh = fade(prev_actual_thresh, curr_actual_thresh, i, s->fade_factors);
593
dst_ptr[i] = copysign(bound(localThresh, fabs(dst_ptr[i])), dst_ptr[i]);
594
}
595
}
596
}
597
}
598
599
static void analyze_frame(DynamicAudioNormalizerContext *s, AVFrame *frame)
600
{
601
if (s->dc_correction) {
602
perform_dc_correction(s, frame);
603
}
604
605
if (s->compress_factor > DBL_EPSILON) {
606
perform_compression(s, frame);
607
}
608
609
if (s->channels_coupled) {
610
const double current_gain_factor = get_max_local_gain(s, frame, -1);
611
int c;
612
613
for (c = 0; c < s->channels; c++)
614
update_gain_history(s, c, current_gain_factor);
615
} else {
616
int c;
617
618
for (c = 0; c < s->channels; c++)
619
update_gain_history(s, c, get_max_local_gain(s, frame, c));
620
}
621
}
622
623
static void amplify_frame(DynamicAudioNormalizerContext *s, AVFrame *frame)
624
{
625
int c, i;
626
627
for (c = 0; c < s->channels; c++) {
628
double *dst_ptr = (double *)frame->extended_data[c];
629
double current_amplification_factor;
630
631
cqueue_dequeue(s->gain_history_smoothed[c], &current_amplification_factor);
632
633
for (i = 0; i < frame->nb_samples; i++) {
634
const double amplification_factor = fade(s->prev_amplification_factor[c],
635
current_amplification_factor, i,
636
s->fade_factors);
637
638
dst_ptr[i] *= amplification_factor;
639
640
if (fabs(dst_ptr[i]) > s->peak_value)
641
dst_ptr[i] = copysign(s->peak_value, dst_ptr[i]);
642
}
643
644
s->prev_amplification_factor[c] = current_amplification_factor;
645
}
646
}
647
648
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
649
{
650
AVFilterContext *ctx = inlink->dst;
651
DynamicAudioNormalizerContext *s = ctx->priv;
652
AVFilterLink *outlink = inlink->dst->outputs[0];
653
int ret = 0;
654
655
if (!cqueue_empty(s->gain_history_smoothed[0])) {
656
AVFrame *out = ff_bufqueue_get(&s->queue);
657
658
amplify_frame(s, out);
659
ret = ff_filter_frame(outlink, out);
660
}
661
662
analyze_frame(s, in);
663
ff_bufqueue_add(ctx, &s->queue, in);
664
665
return ret;
666
}
667
668
static int flush_buffer(DynamicAudioNormalizerContext *s, AVFilterLink *inlink,
669
AVFilterLink *outlink)
670
{
671
AVFrame *out = ff_get_audio_buffer(outlink, s->frame_len);
672
int c, i;
673
674
if (!out)
675
return AVERROR(ENOMEM);
676
677
for (c = 0; c < s->channels; c++) {
678
double *dst_ptr = (double *)out->extended_data[c];
679
680
for (i = 0; i < out->nb_samples; i++) {
681
dst_ptr[i] = s->alt_boundary_mode ? DBL_EPSILON : ((s->target_rms > DBL_EPSILON) ? FFMIN(s->peak_value, s->target_rms) : s->peak_value);
682
if (s->dc_correction) {
683
dst_ptr[i] *= ((i % 2) == 1) ? -1 : 1;
684
dst_ptr[i] += s->dc_correction_value[c];
685
}
686
}
687
}
688
689
s->delay--;
690
return filter_frame(inlink, out);
691
}
692
693
static int request_frame(AVFilterLink *outlink)
694
{
695
AVFilterContext *ctx = outlink->src;
696
DynamicAudioNormalizerContext *s = ctx->priv;
697
int ret = 0;
698
699
ret = ff_request_frame(ctx->inputs[0]);
700
701
if (ret == AVERROR_EOF && !ctx->is_disabled && s->delay)
702
ret = flush_buffer(s, ctx->inputs[0], outlink);
703
704
return ret;
705
}
706
707
static const AVFilterPad avfilter_af_dynaudnorm_inputs[] = {
708
{
709
.name = "default",
710
.type = AVMEDIA_TYPE_AUDIO,
711
.filter_frame = filter_frame,
712
.config_props = config_input,
713
.needs_writable = 1,
714
},
715
{ NULL }
716
};
717
718
static const AVFilterPad avfilter_af_dynaudnorm_outputs[] = {
719
{
720
.name = "default",
721
.type = AVMEDIA_TYPE_AUDIO,
722
.request_frame = request_frame,
723
},
724
{ NULL }
725
};
726
727
AVFilter ff_af_dynaudnorm = {
728
.name = "dynaudnorm",
729
.description = NULL_IF_CONFIG_SMALL("Dynamic Audio Normalizer."),
730
.query_formats = query_formats,
731
.priv_size = sizeof(DynamicAudioNormalizerContext),
732
.init = init,
733
.uninit = uninit,
734
.inputs = avfilter_af_dynaudnorm_inputs,
735
.outputs = avfilter_af_dynaudnorm_outputs,
736
.priv_class = &dynaudnorm_class,
737
};
738
739