Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52867 views
1
/*
2
* Copyright (c) 2012 Justin Ruggles <[email protected]>
3
*
4
* This file is part of FFmpeg.
5
*
6
* FFmpeg is free software; you can redistribute it and/or
7
* modify it under the terms of the GNU Lesser General Public
8
* License as published by the Free Software Foundation; either
9
* version 2.1 of the License, or (at your option) any later version.
10
*
11
* FFmpeg is distributed in the hope that it will be useful,
12
* but WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14
* Lesser General Public License for more details.
15
*
16
* You should have received a copy of the GNU Lesser General Public
17
* License along with FFmpeg; if not, write to the Free Software
18
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
*/
20
21
#ifndef AVRESAMPLE_AVRESAMPLE_H
22
#define AVRESAMPLE_AVRESAMPLE_H
23
24
/**
25
* @file
26
* @ingroup lavr
27
* external API header
28
*/
29
30
/**
31
* @defgroup lavr Libavresample
32
* @{
33
*
34
* Libavresample (lavr) is a library that handles audio resampling, sample
35
* format conversion and mixing.
36
*
37
* Interaction with lavr is done through AVAudioResampleContext, which is
38
* allocated with avresample_alloc_context(). It is opaque, so all parameters
39
* must be set with the @ref avoptions API.
40
*
41
* For example the following code will setup conversion from planar float sample
42
* format to interleaved signed 16-bit integer, downsampling from 48kHz to
43
* 44.1kHz and downmixing from 5.1 channels to stereo (using the default mixing
44
* matrix):
45
* @code
46
* AVAudioResampleContext *avr = avresample_alloc_context();
47
* av_opt_set_int(avr, "in_channel_layout", AV_CH_LAYOUT_5POINT1, 0);
48
* av_opt_set_int(avr, "out_channel_layout", AV_CH_LAYOUT_STEREO, 0);
49
* av_opt_set_int(avr, "in_sample_rate", 48000, 0);
50
* av_opt_set_int(avr, "out_sample_rate", 44100, 0);
51
* av_opt_set_int(avr, "in_sample_fmt", AV_SAMPLE_FMT_FLTP, 0);
52
* av_opt_set_int(avr, "out_sample_fmt", AV_SAMPLE_FMT_S16, 0);
53
* @endcode
54
*
55
* Once the context is initialized, it must be opened with avresample_open(). If
56
* you need to change the conversion parameters, you must close the context with
57
* avresample_close(), change the parameters as described above, then reopen it
58
* again.
59
*
60
* The conversion itself is done by repeatedly calling avresample_convert().
61
* Note that the samples may get buffered in two places in lavr. The first one
62
* is the output FIFO, where the samples end up if the output buffer is not
63
* large enough. The data stored in there may be retrieved at any time with
64
* avresample_read(). The second place is the resampling delay buffer,
65
* applicable only when resampling is done. The samples in it require more input
66
* before they can be processed. Their current amount is returned by
67
* avresample_get_delay(). At the end of conversion the resampling buffer can be
68
* flushed by calling avresample_convert() with NULL input.
69
*
70
* The following code demonstrates the conversion loop assuming the parameters
71
* from above and caller-defined functions get_input() and handle_output():
72
* @code
73
* uint8_t **input;
74
* int in_linesize, in_samples;
75
*
76
* while (get_input(&input, &in_linesize, &in_samples)) {
77
* uint8_t *output
78
* int out_linesize;
79
* int out_samples = avresample_get_out_samples(avr, in_samples);
80
*
81
* av_samples_alloc(&output, &out_linesize, 2, out_samples,
82
* AV_SAMPLE_FMT_S16, 0);
83
* out_samples = avresample_convert(avr, &output, out_linesize, out_samples,
84
* input, in_linesize, in_samples);
85
* handle_output(output, out_linesize, out_samples);
86
* av_freep(&output);
87
* }
88
* @endcode
89
*
90
* When the conversion is finished and the FIFOs are flushed if required, the
91
* conversion context and everything associated with it must be freed with
92
* avresample_free().
93
*/
94
95
#include "libavutil/avutil.h"
96
#include "libavutil/channel_layout.h"
97
#include "libavutil/dict.h"
98
#include "libavutil/frame.h"
99
#include "libavutil/log.h"
100
#include "libavutil/mathematics.h"
101
102
#include "libavresample/version.h"
103
104
#define AVRESAMPLE_MAX_CHANNELS 32
105
106
typedef struct AVAudioResampleContext AVAudioResampleContext;
107
108
/** Mixing Coefficient Types */
109
enum AVMixCoeffType {
110
AV_MIX_COEFF_TYPE_Q8, /** 16-bit 8.8 fixed-point */
111
AV_MIX_COEFF_TYPE_Q15, /** 32-bit 17.15 fixed-point */
112
AV_MIX_COEFF_TYPE_FLT, /** floating-point */
113
AV_MIX_COEFF_TYPE_NB, /** Number of coeff types. Not part of ABI */
114
};
115
116
/** Resampling Filter Types */
117
enum AVResampleFilterType {
118
AV_RESAMPLE_FILTER_TYPE_CUBIC, /**< Cubic */
119
AV_RESAMPLE_FILTER_TYPE_BLACKMAN_NUTTALL, /**< Blackman Nuttall Windowed Sinc */
120
AV_RESAMPLE_FILTER_TYPE_KAISER, /**< Kaiser Windowed Sinc */
121
};
122
123
enum AVResampleDitherMethod {
124
AV_RESAMPLE_DITHER_NONE, /**< Do not use dithering */
125
AV_RESAMPLE_DITHER_RECTANGULAR, /**< Rectangular Dither */
126
AV_RESAMPLE_DITHER_TRIANGULAR, /**< Triangular Dither*/
127
AV_RESAMPLE_DITHER_TRIANGULAR_HP, /**< Triangular Dither with High Pass */
128
AV_RESAMPLE_DITHER_TRIANGULAR_NS, /**< Triangular Dither with Noise Shaping */
129
AV_RESAMPLE_DITHER_NB, /**< Number of dither types. Not part of ABI. */
130
};
131
132
/**
133
* Return the LIBAVRESAMPLE_VERSION_INT constant.
134
*/
135
unsigned avresample_version(void);
136
137
/**
138
* Return the libavresample build-time configuration.
139
* @return configure string
140
*/
141
const char *avresample_configuration(void);
142
143
/**
144
* Return the libavresample license.
145
*/
146
const char *avresample_license(void);
147
148
/**
149
* Get the AVClass for AVAudioResampleContext.
150
*
151
* Can be used in combination with AV_OPT_SEARCH_FAKE_OBJ for examining options
152
* without allocating a context.
153
*
154
* @see av_opt_find().
155
*
156
* @return AVClass for AVAudioResampleContext
157
*/
158
const AVClass *avresample_get_class(void);
159
160
/**
161
* Allocate AVAudioResampleContext and set options.
162
*
163
* @return allocated audio resample context, or NULL on failure
164
*/
165
AVAudioResampleContext *avresample_alloc_context(void);
166
167
/**
168
* Initialize AVAudioResampleContext.
169
* @note The context must be configured using the AVOption API.
170
* @note The fields "in_channel_layout", "out_channel_layout",
171
* "in_sample_rate", "out_sample_rate", "in_sample_fmt",
172
* "out_sample_fmt" must be set.
173
*
174
* @see av_opt_set_int()
175
* @see av_opt_set_dict()
176
* @see av_get_default_channel_layout()
177
*
178
* @param avr audio resample context
179
* @return 0 on success, negative AVERROR code on failure
180
*/
181
int avresample_open(AVAudioResampleContext *avr);
182
183
/**
184
* Check whether an AVAudioResampleContext is open or closed.
185
*
186
* @param avr AVAudioResampleContext to check
187
* @return 1 if avr is open, 0 if avr is closed.
188
*/
189
int avresample_is_open(AVAudioResampleContext *avr);
190
191
/**
192
* Close AVAudioResampleContext.
193
*
194
* This closes the context, but it does not change the parameters. The context
195
* can be reopened with avresample_open(). It does, however, clear the output
196
* FIFO and any remaining leftover samples in the resampling delay buffer. If
197
* there was a custom matrix being used, that is also cleared.
198
*
199
* @see avresample_convert()
200
* @see avresample_set_matrix()
201
*
202
* @param avr audio resample context
203
*/
204
void avresample_close(AVAudioResampleContext *avr);
205
206
/**
207
* Free AVAudioResampleContext and associated AVOption values.
208
*
209
* This also calls avresample_close() before freeing.
210
*
211
* @param avr audio resample context
212
*/
213
void avresample_free(AVAudioResampleContext **avr);
214
215
/**
216
* Generate a channel mixing matrix.
217
*
218
* This function is the one used internally by libavresample for building the
219
* default mixing matrix. It is made public just as a utility function for
220
* building custom matrices.
221
*
222
* @param in_layout input channel layout
223
* @param out_layout output channel layout
224
* @param center_mix_level mix level for the center channel
225
* @param surround_mix_level mix level for the surround channel(s)
226
* @param lfe_mix_level mix level for the low-frequency effects channel
227
* @param normalize if 1, coefficients will be normalized to prevent
228
* overflow. if 0, coefficients will not be
229
* normalized.
230
* @param[out] matrix mixing coefficients; matrix[i + stride * o] is
231
* the weight of input channel i in output channel o.
232
* @param stride distance between adjacent input channels in the
233
* matrix array
234
* @param matrix_encoding matrixed stereo downmix mode (e.g. dplii)
235
* @return 0 on success, negative AVERROR code on failure
236
*/
237
int avresample_build_matrix(uint64_t in_layout, uint64_t out_layout,
238
double center_mix_level, double surround_mix_level,
239
double lfe_mix_level, int normalize, double *matrix,
240
int stride, enum AVMatrixEncoding matrix_encoding);
241
242
/**
243
* Get the current channel mixing matrix.
244
*
245
* If no custom matrix has been previously set or the AVAudioResampleContext is
246
* not open, an error is returned.
247
*
248
* @param avr audio resample context
249
* @param matrix mixing coefficients; matrix[i + stride * o] is the weight of
250
* input channel i in output channel o.
251
* @param stride distance between adjacent input channels in the matrix array
252
* @return 0 on success, negative AVERROR code on failure
253
*/
254
int avresample_get_matrix(AVAudioResampleContext *avr, double *matrix,
255
int stride);
256
257
/**
258
* Set channel mixing matrix.
259
*
260
* Allows for setting a custom mixing matrix, overriding the default matrix
261
* generated internally during avresample_open(). This function can be called
262
* anytime on an allocated context, either before or after calling
263
* avresample_open(), as long as the channel layouts have been set.
264
* avresample_convert() always uses the current matrix.
265
* Calling avresample_close() on the context will clear the current matrix.
266
*
267
* @see avresample_close()
268
*
269
* @param avr audio resample context
270
* @param matrix mixing coefficients; matrix[i + stride * o] is the weight of
271
* input channel i in output channel o.
272
* @param stride distance between adjacent input channels in the matrix array
273
* @return 0 on success, negative AVERROR code on failure
274
*/
275
int avresample_set_matrix(AVAudioResampleContext *avr, const double *matrix,
276
int stride);
277
278
/**
279
* Set a customized input channel mapping.
280
*
281
* This function can only be called when the allocated context is not open.
282
* Also, the input channel layout must have already been set.
283
*
284
* Calling avresample_close() on the context will clear the channel mapping.
285
*
286
* The map for each input channel specifies the channel index in the source to
287
* use for that particular channel, or -1 to mute the channel. Source channels
288
* can be duplicated by using the same index for multiple input channels.
289
*
290
* Examples:
291
*
292
* Reordering 5.1 AAC order (C,L,R,Ls,Rs,LFE) to FFmpeg order (L,R,C,LFE,Ls,Rs):
293
* { 1, 2, 0, 5, 3, 4 }
294
*
295
* Muting the 3rd channel in 4-channel input:
296
* { 0, 1, -1, 3 }
297
*
298
* Duplicating the left channel of stereo input:
299
* { 0, 0 }
300
*
301
* @param avr audio resample context
302
* @param channel_map customized input channel mapping
303
* @return 0 on success, negative AVERROR code on failure
304
*/
305
int avresample_set_channel_mapping(AVAudioResampleContext *avr,
306
const int *channel_map);
307
308
/**
309
* Set compensation for resampling.
310
*
311
* This can be called anytime after avresample_open(). If resampling is not
312
* automatically enabled because of a sample rate conversion, the
313
* "force_resampling" option must have been set to 1 when opening the context
314
* in order to use resampling compensation.
315
*
316
* @param avr audio resample context
317
* @param sample_delta compensation delta, in samples
318
* @param compensation_distance compensation distance, in samples
319
* @return 0 on success, negative AVERROR code on failure
320
*/
321
int avresample_set_compensation(AVAudioResampleContext *avr, int sample_delta,
322
int compensation_distance);
323
324
/**
325
* Provide the upper bound on the number of samples the configured
326
* conversion would output.
327
*
328
* @param avr audio resample context
329
* @param in_nb_samples number of input samples
330
*
331
* @return number of samples or AVERROR(EINVAL) if the value
332
* would exceed INT_MAX
333
*/
334
335
int avresample_get_out_samples(AVAudioResampleContext *avr, int in_nb_samples);
336
337
/**
338
* Convert input samples and write them to the output FIFO.
339
*
340
* The upper bound on the number of output samples can be obtained through
341
* avresample_get_out_samples().
342
*
343
* The output data can be NULL or have fewer allocated samples than required.
344
* In this case, any remaining samples not written to the output will be added
345
* to an internal FIFO buffer, to be returned at the next call to this function
346
* or to avresample_read().
347
*
348
* If converting sample rate, there may be data remaining in the internal
349
* resampling delay buffer. avresample_get_delay() tells the number of remaining
350
* samples. To get this data as output, call avresample_convert() with NULL
351
* input.
352
*
353
* At the end of the conversion process, there may be data remaining in the
354
* internal FIFO buffer. avresample_available() tells the number of remaining
355
* samples. To get this data as output, either call avresample_convert() with
356
* NULL input or call avresample_read().
357
*
358
* @see avresample_get_out_samples()
359
* @see avresample_read()
360
* @see avresample_get_delay()
361
*
362
* @param avr audio resample context
363
* @param output output data pointers
364
* @param out_plane_size output plane size, in bytes.
365
* This can be 0 if unknown, but that will lead to
366
* optimized functions not being used directly on the
367
* output, which could slow down some conversions.
368
* @param out_samples maximum number of samples that the output buffer can hold
369
* @param input input data pointers
370
* @param in_plane_size input plane size, in bytes
371
* This can be 0 if unknown, but that will lead to
372
* optimized functions not being used directly on the
373
* input, which could slow down some conversions.
374
* @param in_samples number of input samples to convert
375
* @return number of samples written to the output buffer,
376
* not including converted samples added to the internal
377
* output FIFO
378
*/
379
int avresample_convert(AVAudioResampleContext *avr, uint8_t **output,
380
int out_plane_size, int out_samples,
381
uint8_t * const *input, int in_plane_size,
382
int in_samples);
383
384
/**
385
* Return the number of samples currently in the resampling delay buffer.
386
*
387
* When resampling, there may be a delay between the input and output. Any
388
* unconverted samples in each call are stored internally in a delay buffer.
389
* This function allows the user to determine the current number of samples in
390
* the delay buffer, which can be useful for synchronization.
391
*
392
* @see avresample_convert()
393
*
394
* @param avr audio resample context
395
* @return number of samples currently in the resampling delay buffer
396
*/
397
int avresample_get_delay(AVAudioResampleContext *avr);
398
399
/**
400
* Return the number of available samples in the output FIFO.
401
*
402
* During conversion, if the user does not specify an output buffer or
403
* specifies an output buffer that is smaller than what is needed, remaining
404
* samples that are not written to the output are stored to an internal FIFO
405
* buffer. The samples in the FIFO can be read with avresample_read() or
406
* avresample_convert().
407
*
408
* @see avresample_read()
409
* @see avresample_convert()
410
*
411
* @param avr audio resample context
412
* @return number of samples available for reading
413
*/
414
int avresample_available(AVAudioResampleContext *avr);
415
416
/**
417
* Read samples from the output FIFO.
418
*
419
* During conversion, if the user does not specify an output buffer or
420
* specifies an output buffer that is smaller than what is needed, remaining
421
* samples that are not written to the output are stored to an internal FIFO
422
* buffer. This function can be used to read samples from that internal FIFO.
423
*
424
* @see avresample_available()
425
* @see avresample_convert()
426
*
427
* @param avr audio resample context
428
* @param output output data pointers. May be NULL, in which case
429
* nb_samples of data is discarded from output FIFO.
430
* @param nb_samples number of samples to read from the FIFO
431
* @return the number of samples written to output
432
*/
433
int avresample_read(AVAudioResampleContext *avr, uint8_t **output, int nb_samples);
434
435
/**
436
* Convert the samples in the input AVFrame and write them to the output AVFrame.
437
*
438
* Input and output AVFrames must have channel_layout, sample_rate and format set.
439
*
440
* The upper bound on the number of output samples is obtained through
441
* avresample_get_out_samples().
442
*
443
* If the output AVFrame does not have the data pointers allocated the nb_samples
444
* field will be set using avresample_get_out_samples() and av_frame_get_buffer()
445
* is called to allocate the frame.
446
*
447
* The output AVFrame can be NULL or have fewer allocated samples than required.
448
* In this case, any remaining samples not written to the output will be added
449
* to an internal FIFO buffer, to be returned at the next call to this function
450
* or to avresample_convert() or to avresample_read().
451
*
452
* If converting sample rate, there may be data remaining in the internal
453
* resampling delay buffer. avresample_get_delay() tells the number of
454
* remaining samples. To get this data as output, call this function or
455
* avresample_convert() with NULL input.
456
*
457
* At the end of the conversion process, there may be data remaining in the
458
* internal FIFO buffer. avresample_available() tells the number of remaining
459
* samples. To get this data as output, either call this function or
460
* avresample_convert() with NULL input or call avresample_read().
461
*
462
* If the AVAudioResampleContext configuration does not match the output and
463
* input AVFrame settings the conversion does not take place and depending on
464
* which AVFrame is not matching AVERROR_OUTPUT_CHANGED, AVERROR_INPUT_CHANGED
465
* or AVERROR_OUTPUT_CHANGED|AVERROR_INPUT_CHANGED is returned.
466
*
467
* @see avresample_get_out_samples()
468
* @see avresample_available()
469
* @see avresample_convert()
470
* @see avresample_read()
471
* @see avresample_get_delay()
472
*
473
* @param avr audio resample context
474
* @param output output AVFrame
475
* @param input input AVFrame
476
* @return 0 on success, AVERROR on failure or nonmatching
477
* configuration.
478
*/
479
int avresample_convert_frame(AVAudioResampleContext *avr,
480
AVFrame *output, AVFrame *input);
481
482
/**
483
* Configure or reconfigure the AVAudioResampleContext using the information
484
* provided by the AVFrames.
485
*
486
* The original resampling context is reset even on failure.
487
* The function calls avresample_close() internally if the context is open.
488
*
489
* @see avresample_open();
490
* @see avresample_close();
491
*
492
* @param avr audio resample context
493
* @param output output AVFrame
494
* @param input input AVFrame
495
* @return 0 on success, AVERROR on failure.
496
*/
497
int avresample_config(AVAudioResampleContext *avr, AVFrame *out, AVFrame *in);
498
499
/**
500
* @}
501
*/
502
503
#endif /* AVRESAMPLE_AVRESAMPLE_H */
504
505