Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52867 views
1
/*
2
* Copyright (C) 2011-2012 Michael Niedermayer ([email protected])
3
*
4
* This file is part of libswresample
5
*
6
* libswresample is free software; you can redistribute it and/or
7
* modify it under the terms of the GNU Lesser General Public
8
* License as published by the Free Software Foundation; either
9
* version 2.1 of the License, or (at your option) any later version.
10
*
11
* libswresample is distributed in the hope that it will be useful,
12
* but WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14
* Lesser General Public License for more details.
15
*
16
* You should have received a copy of the GNU Lesser General Public
17
* License along with libswresample; if not, write to the Free Software
18
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
*/
20
21
#include "swresample_internal.h"
22
#include "libavutil/avassert.h"
23
#include "libavutil/channel_layout.h"
24
25
#define TEMPLATE_REMATRIX_FLT
26
#include "rematrix_template.c"
27
#undef TEMPLATE_REMATRIX_FLT
28
29
#define TEMPLATE_REMATRIX_DBL
30
#include "rematrix_template.c"
31
#undef TEMPLATE_REMATRIX_DBL
32
33
#define TEMPLATE_REMATRIX_S16
34
#include "rematrix_template.c"
35
#undef TEMPLATE_REMATRIX_S16
36
37
#define TEMPLATE_REMATRIX_S32
38
#include "rematrix_template.c"
39
#undef TEMPLATE_REMATRIX_S32
40
41
#define FRONT_LEFT 0
42
#define FRONT_RIGHT 1
43
#define FRONT_CENTER 2
44
#define LOW_FREQUENCY 3
45
#define BACK_LEFT 4
46
#define BACK_RIGHT 5
47
#define FRONT_LEFT_OF_CENTER 6
48
#define FRONT_RIGHT_OF_CENTER 7
49
#define BACK_CENTER 8
50
#define SIDE_LEFT 9
51
#define SIDE_RIGHT 10
52
#define TOP_CENTER 11
53
#define TOP_FRONT_LEFT 12
54
#define TOP_FRONT_CENTER 13
55
#define TOP_FRONT_RIGHT 14
56
#define TOP_BACK_LEFT 15
57
#define TOP_BACK_CENTER 16
58
#define TOP_BACK_RIGHT 17
59
#define NUM_NAMED_CHANNELS 18
60
61
int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
62
{
63
int nb_in, nb_out, in, out;
64
65
if (!s || s->in_convert) // s needs to be allocated but not initialized
66
return AVERROR(EINVAL);
67
memset(s->matrix, 0, sizeof(s->matrix));
68
nb_in = av_get_channel_layout_nb_channels(s->user_in_ch_layout);
69
nb_out = av_get_channel_layout_nb_channels(s->user_out_ch_layout);
70
for (out = 0; out < nb_out; out++) {
71
for (in = 0; in < nb_in; in++)
72
s->matrix[out][in] = matrix[in];
73
matrix += stride;
74
}
75
s->rematrix_custom = 1;
76
return 0;
77
}
78
79
static int even(int64_t layout){
80
if(!layout) return 1;
81
if(layout&(layout-1)) return 1;
82
return 0;
83
}
84
85
static int clean_layout(SwrContext *s, int64_t layout){
86
if(layout && layout != AV_CH_FRONT_CENTER && !(layout&(layout-1))) {
87
char buf[128];
88
av_get_channel_layout_string(buf, sizeof(buf), -1, layout);
89
av_log(s, AV_LOG_VERBOSE, "Treating %s as mono\n", buf);
90
return AV_CH_FRONT_CENTER;
91
}
92
93
return layout;
94
}
95
96
static int sane_layout(int64_t layout){
97
if(!(layout & AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker
98
return 0;
99
if(!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT))) // no asymetric front
100
return 0;
101
if(!even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT))) // no asymetric side
102
return 0;
103
if(!even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT)))
104
return 0;
105
if(!even(layout & (AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER)))
106
return 0;
107
if(av_get_channel_layout_nb_channels(layout) >= SWR_CH_MAX)
108
return 0;
109
110
return 1;
111
}
112
113
av_cold static int auto_matrix(SwrContext *s)
114
{
115
int i, j, out_i;
116
double matrix[NUM_NAMED_CHANNELS][NUM_NAMED_CHANNELS]={{0}};
117
int64_t unaccounted, in_ch_layout, out_ch_layout;
118
double maxcoef=0;
119
char buf[128];
120
const int matrix_encoding = s->matrix_encoding;
121
float maxval;
122
123
in_ch_layout = clean_layout(s, s->in_ch_layout);
124
out_ch_layout = clean_layout(s, s->out_ch_layout);
125
126
if( out_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
127
&& (in_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
128
)
129
out_ch_layout = AV_CH_LAYOUT_STEREO;
130
131
if( in_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
132
&& (out_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
133
)
134
in_ch_layout = AV_CH_LAYOUT_STEREO;
135
136
if(!sane_layout(in_ch_layout)){
137
av_get_channel_layout_string(buf, sizeof(buf), -1, s->in_ch_layout);
138
av_log(s, AV_LOG_ERROR, "Input channel layout '%s' is not supported\n", buf);
139
return AVERROR(EINVAL);
140
}
141
142
if(!sane_layout(out_ch_layout)){
143
av_get_channel_layout_string(buf, sizeof(buf), -1, s->out_ch_layout);
144
av_log(s, AV_LOG_ERROR, "Output channel layout '%s' is not supported\n", buf);
145
return AVERROR(EINVAL);
146
}
147
148
memset(s->matrix, 0, sizeof(s->matrix));
149
for(i=0; i<FF_ARRAY_ELEMS(matrix); i++){
150
if(in_ch_layout & out_ch_layout & (1ULL<<i))
151
matrix[i][i]= 1.0;
152
}
153
154
unaccounted= in_ch_layout & ~out_ch_layout;
155
156
//FIXME implement dolby surround
157
//FIXME implement full ac3
158
159
160
if(unaccounted & AV_CH_FRONT_CENTER){
161
if((out_ch_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO){
162
if(in_ch_layout & AV_CH_LAYOUT_STEREO) {
163
matrix[ FRONT_LEFT][FRONT_CENTER]+= s->clev;
164
matrix[FRONT_RIGHT][FRONT_CENTER]+= s->clev;
165
} else {
166
matrix[ FRONT_LEFT][FRONT_CENTER]+= M_SQRT1_2;
167
matrix[FRONT_RIGHT][FRONT_CENTER]+= M_SQRT1_2;
168
}
169
}else
170
av_assert0(0);
171
}
172
if(unaccounted & AV_CH_LAYOUT_STEREO){
173
if(out_ch_layout & AV_CH_FRONT_CENTER){
174
matrix[FRONT_CENTER][ FRONT_LEFT]+= M_SQRT1_2;
175
matrix[FRONT_CENTER][FRONT_RIGHT]+= M_SQRT1_2;
176
if(in_ch_layout & AV_CH_FRONT_CENTER)
177
matrix[FRONT_CENTER][ FRONT_CENTER] = s->clev*sqrt(2);
178
}else
179
av_assert0(0);
180
}
181
182
if(unaccounted & AV_CH_BACK_CENTER){
183
if(out_ch_layout & AV_CH_BACK_LEFT){
184
matrix[ BACK_LEFT][BACK_CENTER]+= M_SQRT1_2;
185
matrix[BACK_RIGHT][BACK_CENTER]+= M_SQRT1_2;
186
}else if(out_ch_layout & AV_CH_SIDE_LEFT){
187
matrix[ SIDE_LEFT][BACK_CENTER]+= M_SQRT1_2;
188
matrix[SIDE_RIGHT][BACK_CENTER]+= M_SQRT1_2;
189
}else if(out_ch_layout & AV_CH_FRONT_LEFT){
190
if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY ||
191
matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
192
if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
193
matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev * M_SQRT1_2;
194
matrix[FRONT_RIGHT][BACK_CENTER] += s->slev * M_SQRT1_2;
195
} else {
196
matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev;
197
matrix[FRONT_RIGHT][BACK_CENTER] += s->slev;
198
}
199
} else {
200
matrix[ FRONT_LEFT][BACK_CENTER]+= s->slev*M_SQRT1_2;
201
matrix[FRONT_RIGHT][BACK_CENTER]+= s->slev*M_SQRT1_2;
202
}
203
}else if(out_ch_layout & AV_CH_FRONT_CENTER){
204
matrix[ FRONT_CENTER][BACK_CENTER]+= s->slev*M_SQRT1_2;
205
}else
206
av_assert0(0);
207
}
208
if(unaccounted & AV_CH_BACK_LEFT){
209
if(out_ch_layout & AV_CH_BACK_CENTER){
210
matrix[BACK_CENTER][ BACK_LEFT]+= M_SQRT1_2;
211
matrix[BACK_CENTER][BACK_RIGHT]+= M_SQRT1_2;
212
}else if(out_ch_layout & AV_CH_SIDE_LEFT){
213
if(in_ch_layout & AV_CH_SIDE_LEFT){
214
matrix[ SIDE_LEFT][ BACK_LEFT]+= M_SQRT1_2;
215
matrix[SIDE_RIGHT][BACK_RIGHT]+= M_SQRT1_2;
216
}else{
217
matrix[ SIDE_LEFT][ BACK_LEFT]+= 1.0;
218
matrix[SIDE_RIGHT][BACK_RIGHT]+= 1.0;
219
}
220
}else if(out_ch_layout & AV_CH_FRONT_LEFT){
221
if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
222
matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * M_SQRT1_2;
223
matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
224
matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
225
matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * M_SQRT1_2;
226
} else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
227
matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * SQRT3_2;
228
matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
229
matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
230
matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * SQRT3_2;
231
} else {
232
matrix[ FRONT_LEFT][ BACK_LEFT] += s->slev;
233
matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev;
234
}
235
}else if(out_ch_layout & AV_CH_FRONT_CENTER){
236
matrix[ FRONT_CENTER][BACK_LEFT ]+= s->slev*M_SQRT1_2;
237
matrix[ FRONT_CENTER][BACK_RIGHT]+= s->slev*M_SQRT1_2;
238
}else
239
av_assert0(0);
240
}
241
242
if(unaccounted & AV_CH_SIDE_LEFT){
243
if(out_ch_layout & AV_CH_BACK_LEFT){
244
/* if back channels do not exist in the input, just copy side
245
channels to back channels, otherwise mix side into back */
246
if (in_ch_layout & AV_CH_BACK_LEFT) {
247
matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2;
248
matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2;
249
} else {
250
matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0;
251
matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
252
}
253
}else if(out_ch_layout & AV_CH_BACK_CENTER){
254
matrix[BACK_CENTER][ SIDE_LEFT]+= M_SQRT1_2;
255
matrix[BACK_CENTER][SIDE_RIGHT]+= M_SQRT1_2;
256
}else if(out_ch_layout & AV_CH_FRONT_LEFT){
257
if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
258
matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * M_SQRT1_2;
259
matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
260
matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
261
matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * M_SQRT1_2;
262
} else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
263
matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * SQRT3_2;
264
matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
265
matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
266
matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * SQRT3_2;
267
} else {
268
matrix[ FRONT_LEFT][ SIDE_LEFT] += s->slev;
269
matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev;
270
}
271
}else if(out_ch_layout & AV_CH_FRONT_CENTER){
272
matrix[ FRONT_CENTER][SIDE_LEFT ]+= s->slev*M_SQRT1_2;
273
matrix[ FRONT_CENTER][SIDE_RIGHT]+= s->slev*M_SQRT1_2;
274
}else
275
av_assert0(0);
276
}
277
278
if(unaccounted & AV_CH_FRONT_LEFT_OF_CENTER){
279
if(out_ch_layout & AV_CH_FRONT_LEFT){
280
matrix[ FRONT_LEFT][ FRONT_LEFT_OF_CENTER]+= 1.0;
281
matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER]+= 1.0;
282
}else if(out_ch_layout & AV_CH_FRONT_CENTER){
283
matrix[ FRONT_CENTER][ FRONT_LEFT_OF_CENTER]+= M_SQRT1_2;
284
matrix[ FRONT_CENTER][FRONT_RIGHT_OF_CENTER]+= M_SQRT1_2;
285
}else
286
av_assert0(0);
287
}
288
/* mix LFE into front left/right or center */
289
if (unaccounted & AV_CH_LOW_FREQUENCY) {
290
if (out_ch_layout & AV_CH_FRONT_CENTER) {
291
matrix[FRONT_CENTER][LOW_FREQUENCY] += s->lfe_mix_level;
292
} else if (out_ch_layout & AV_CH_FRONT_LEFT) {
293
matrix[FRONT_LEFT ][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
294
matrix[FRONT_RIGHT][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
295
} else
296
av_assert0(0);
297
}
298
299
for(out_i=i=0; i<64; i++){
300
double sum=0;
301
int in_i=0;
302
if((out_ch_layout & (1ULL<<i)) == 0)
303
continue;
304
for(j=0; j<64; j++){
305
if((in_ch_layout & (1ULL<<j)) == 0)
306
continue;
307
if (i < FF_ARRAY_ELEMS(matrix) && j < FF_ARRAY_ELEMS(matrix[0]))
308
s->matrix[out_i][in_i]= matrix[i][j];
309
else
310
s->matrix[out_i][in_i]= i == j && (in_ch_layout & out_ch_layout & (1ULL<<i));
311
sum += fabs(s->matrix[out_i][in_i]);
312
in_i++;
313
}
314
maxcoef= FFMAX(maxcoef, sum);
315
out_i++;
316
}
317
if(s->rematrix_volume < 0)
318
maxcoef = -s->rematrix_volume;
319
320
if (s->rematrix_maxval > 0) {
321
maxval = s->rematrix_maxval;
322
} else if ( av_get_packed_sample_fmt(s->out_sample_fmt) < AV_SAMPLE_FMT_FLT
323
|| av_get_packed_sample_fmt(s->int_sample_fmt) < AV_SAMPLE_FMT_FLT) {
324
maxval = 1.0;
325
} else
326
maxval = INT_MAX;
327
328
if(maxcoef > maxval || s->rematrix_volume < 0){
329
maxcoef /= maxval;
330
for(i=0; i<SWR_CH_MAX; i++)
331
for(j=0; j<SWR_CH_MAX; j++){
332
s->matrix[i][j] /= maxcoef;
333
}
334
}
335
336
if(s->rematrix_volume > 0){
337
for(i=0; i<SWR_CH_MAX; i++)
338
for(j=0; j<SWR_CH_MAX; j++){
339
s->matrix[i][j] *= s->rematrix_volume;
340
}
341
}
342
343
av_log(s, AV_LOG_DEBUG, "Matrix coefficients:\n");
344
for(i=0; i<av_get_channel_layout_nb_channels(out_ch_layout); i++){
345
const char *c =
346
av_get_channel_name(av_channel_layout_extract_channel(out_ch_layout, i));
347
av_log(s, AV_LOG_DEBUG, "%s: ", c ? c : "?");
348
for(j=0; j<av_get_channel_layout_nb_channels(in_ch_layout); j++){
349
c = av_get_channel_name(av_channel_layout_extract_channel(in_ch_layout, j));
350
av_log(s, AV_LOG_DEBUG, "%s:%f ", c ? c : "?", s->matrix[i][j]);
351
}
352
av_log(s, AV_LOG_DEBUG, "\n");
353
}
354
return 0;
355
}
356
357
av_cold int swri_rematrix_init(SwrContext *s){
358
int i, j;
359
int nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout);
360
int nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout);
361
362
s->mix_any_f = NULL;
363
364
if (!s->rematrix_custom) {
365
int r = auto_matrix(s);
366
if (r)
367
return r;
368
}
369
if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){
370
s->native_matrix = av_calloc(nb_in * nb_out, sizeof(int));
371
s->native_one = av_mallocz(sizeof(int));
372
if (!s->native_matrix || !s->native_one)
373
return AVERROR(ENOMEM);
374
for (i = 0; i < nb_out; i++)
375
for (j = 0; j < nb_in; j++)
376
((int*)s->native_matrix)[i * nb_in + j] = lrintf(s->matrix[i][j] * 32768);
377
*((int*)s->native_one) = 32768;
378
s->mix_1_1_f = (mix_1_1_func_type*)copy_s16;
379
s->mix_2_1_f = (mix_2_1_func_type*)sum2_s16;
380
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s16(s);
381
}else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){
382
s->native_matrix = av_calloc(nb_in * nb_out, sizeof(float));
383
s->native_one = av_mallocz(sizeof(float));
384
if (!s->native_matrix || !s->native_one)
385
return AVERROR(ENOMEM);
386
for (i = 0; i < nb_out; i++)
387
for (j = 0; j < nb_in; j++)
388
((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
389
*((float*)s->native_one) = 1.0;
390
s->mix_1_1_f = (mix_1_1_func_type*)copy_float;
391
s->mix_2_1_f = (mix_2_1_func_type*)sum2_float;
392
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_float(s);
393
}else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){
394
s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double));
395
s->native_one = av_mallocz(sizeof(double));
396
if (!s->native_matrix || !s->native_one)
397
return AVERROR(ENOMEM);
398
for (i = 0; i < nb_out; i++)
399
for (j = 0; j < nb_in; j++)
400
((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
401
*((double*)s->native_one) = 1.0;
402
s->mix_1_1_f = (mix_1_1_func_type*)copy_double;
403
s->mix_2_1_f = (mix_2_1_func_type*)sum2_double;
404
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_double(s);
405
}else if(s->midbuf.fmt == AV_SAMPLE_FMT_S32P){
406
// Only for dithering currently
407
// s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double));
408
s->native_one = av_mallocz(sizeof(int));
409
if (!s->native_one)
410
return AVERROR(ENOMEM);
411
// for (i = 0; i < nb_out; i++)
412
// for (j = 0; j < nb_in; j++)
413
// ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
414
*((int*)s->native_one) = 32768;
415
s->mix_1_1_f = (mix_1_1_func_type*)copy_s32;
416
s->mix_2_1_f = (mix_2_1_func_type*)sum2_s32;
417
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s32(s);
418
}else
419
av_assert0(0);
420
//FIXME quantize for integeres
421
for (i = 0; i < SWR_CH_MAX; i++) {
422
int ch_in=0;
423
for (j = 0; j < SWR_CH_MAX; j++) {
424
s->matrix32[i][j]= lrintf(s->matrix[i][j] * 32768);
425
if(s->matrix[i][j])
426
s->matrix_ch[i][++ch_in]= j;
427
}
428
s->matrix_ch[i][0]= ch_in;
429
}
430
431
if(HAVE_YASM && HAVE_MMX)
432
return swri_rematrix_init_x86(s);
433
434
return 0;
435
}
436
437
av_cold void swri_rematrix_free(SwrContext *s){
438
av_freep(&s->native_matrix);
439
av_freep(&s->native_one);
440
av_freep(&s->native_simd_matrix);
441
av_freep(&s->native_simd_one);
442
}
443
444
int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){
445
int out_i, in_i, i, j;
446
int len1 = 0;
447
int off = 0;
448
449
if(s->mix_any_f) {
450
s->mix_any_f(out->ch, (const uint8_t **)in->ch, s->native_matrix, len);
451
return 0;
452
}
453
454
if(s->mix_2_1_simd || s->mix_1_1_simd){
455
len1= len&~15;
456
off = len1 * out->bps;
457
}
458
459
av_assert0(!s->out_ch_layout || out->ch_count == av_get_channel_layout_nb_channels(s->out_ch_layout));
460
av_assert0(!s-> in_ch_layout || in ->ch_count == av_get_channel_layout_nb_channels(s-> in_ch_layout));
461
462
for(out_i=0; out_i<out->ch_count; out_i++){
463
switch(s->matrix_ch[out_i][0]){
464
case 0:
465
if(mustcopy)
466
memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt));
467
break;
468
case 1:
469
in_i= s->matrix_ch[out_i][1];
470
if(s->matrix[out_i][in_i]!=1.0){
471
if(s->mix_1_1_simd && len1)
472
s->mix_1_1_simd(out->ch[out_i] , in->ch[in_i] , s->native_simd_matrix, in->ch_count*out_i + in_i, len1);
473
if(len != len1)
474
s->mix_1_1_f (out->ch[out_i]+off, in->ch[in_i]+off, s->native_matrix, in->ch_count*out_i + in_i, len-len1);
475
}else if(mustcopy){
476
memcpy(out->ch[out_i], in->ch[in_i], len*out->bps);
477
}else{
478
out->ch[out_i]= in->ch[in_i];
479
}
480
break;
481
case 2: {
482
int in_i1 = s->matrix_ch[out_i][1];
483
int in_i2 = s->matrix_ch[out_i][2];
484
if(s->mix_2_1_simd && len1)
485
s->mix_2_1_simd(out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_simd_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
486
else
487
s->mix_2_1_f (out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
488
if(len != len1)
489
s->mix_2_1_f (out->ch[out_i]+off, in->ch[in_i1]+off, in->ch[in_i2]+off, s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len-len1);
490
break;}
491
default:
492
if(s->int_sample_fmt == AV_SAMPLE_FMT_FLTP){
493
for(i=0; i<len; i++){
494
float v=0;
495
for(j=0; j<s->matrix_ch[out_i][0]; j++){
496
in_i= s->matrix_ch[out_i][1+j];
497
v+= ((float*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
498
}
499
((float*)out->ch[out_i])[i]= v;
500
}
501
}else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){
502
for(i=0; i<len; i++){
503
double v=0;
504
for(j=0; j<s->matrix_ch[out_i][0]; j++){
505
in_i= s->matrix_ch[out_i][1+j];
506
v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
507
}
508
((double*)out->ch[out_i])[i]= v;
509
}
510
}else{
511
for(i=0; i<len; i++){
512
int v=0;
513
for(j=0; j<s->matrix_ch[out_i][0]; j++){
514
in_i= s->matrix_ch[out_i][1+j];
515
v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i];
516
}
517
((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15;
518
}
519
}
520
}
521
}
522
return 0;
523
}
524
525