Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52868 views
1
;******************************************************************************
2
;* x86-optimized input routines; does shuffling of packed
3
;* YUV formats into individual planes, and converts RGB
4
;* into YUV planes also.
5
;* Copyright (c) 2012 Ronald S. Bultje <rsbultje@gmail.com>
6
;*
7
;* This file is part of FFmpeg.
8
;*
9
;* FFmpeg is free software; you can redistribute it and/or
10
;* modify it under the terms of the GNU Lesser General Public
11
;* License as published by the Free Software Foundation; either
12
;* version 2.1 of the License, or (at your option) any later version.
13
;*
14
;* FFmpeg is distributed in the hope that it will be useful,
15
;* but WITHOUT ANY WARRANTY; without even the implied warranty of
16
;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17
;* Lesser General Public License for more details.
18
;*
19
;* You should have received a copy of the GNU Lesser General Public
20
;* License along with FFmpeg; if not, write to the Free Software
21
;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
;******************************************************************************
23
24
%include "libavutil/x86/x86util.asm"
25
26
SECTION_RODATA
27
28
%define RY 0x20DE
29
%define GY 0x4087
30
%define BY 0x0C88
31
%define RU 0xECFF
32
%define GU 0xDAC8
33
%define BU 0x3838
34
%define RV 0x3838
35
%define GV 0xD0E3
36
%define BV 0xF6E4
37
38
rgb_Yrnd: times 4 dd 0x80100 ; 16.5 << 15
39
rgb_UVrnd: times 4 dd 0x400100 ; 128.5 << 15
40
%define bgr_Ycoeff_12x4 16*4 + 16* 0 + tableq
41
%define bgr_Ycoeff_3x56 16*4 + 16* 1 + tableq
42
%define rgb_Ycoeff_12x4 16*4 + 16* 2 + tableq
43
%define rgb_Ycoeff_3x56 16*4 + 16* 3 + tableq
44
%define bgr_Ucoeff_12x4 16*4 + 16* 4 + tableq
45
%define bgr_Ucoeff_3x56 16*4 + 16* 5 + tableq
46
%define rgb_Ucoeff_12x4 16*4 + 16* 6 + tableq
47
%define rgb_Ucoeff_3x56 16*4 + 16* 7 + tableq
48
%define bgr_Vcoeff_12x4 16*4 + 16* 8 + tableq
49
%define bgr_Vcoeff_3x56 16*4 + 16* 9 + tableq
50
%define rgb_Vcoeff_12x4 16*4 + 16*10 + tableq
51
%define rgb_Vcoeff_3x56 16*4 + 16*11 + tableq
52
53
%define rgba_Ycoeff_rb 16*4 + 16*12 + tableq
54
%define rgba_Ycoeff_br 16*4 + 16*13 + tableq
55
%define rgba_Ycoeff_ga 16*4 + 16*14 + tableq
56
%define rgba_Ycoeff_ag 16*4 + 16*15 + tableq
57
%define rgba_Ucoeff_rb 16*4 + 16*16 + tableq
58
%define rgba_Ucoeff_br 16*4 + 16*17 + tableq
59
%define rgba_Ucoeff_ga 16*4 + 16*18 + tableq
60
%define rgba_Ucoeff_ag 16*4 + 16*19 + tableq
61
%define rgba_Vcoeff_rb 16*4 + 16*20 + tableq
62
%define rgba_Vcoeff_br 16*4 + 16*21 + tableq
63
%define rgba_Vcoeff_ga 16*4 + 16*22 + tableq
64
%define rgba_Vcoeff_ag 16*4 + 16*23 + tableq
65
66
; bgr_Ycoeff_12x4: times 2 dw BY, GY, 0, BY
67
; bgr_Ycoeff_3x56: times 2 dw RY, 0, GY, RY
68
; rgb_Ycoeff_12x4: times 2 dw RY, GY, 0, RY
69
; rgb_Ycoeff_3x56: times 2 dw BY, 0, GY, BY
70
; bgr_Ucoeff_12x4: times 2 dw BU, GU, 0, BU
71
; bgr_Ucoeff_3x56: times 2 dw RU, 0, GU, RU
72
; rgb_Ucoeff_12x4: times 2 dw RU, GU, 0, RU
73
; rgb_Ucoeff_3x56: times 2 dw BU, 0, GU, BU
74
; bgr_Vcoeff_12x4: times 2 dw BV, GV, 0, BV
75
; bgr_Vcoeff_3x56: times 2 dw RV, 0, GV, RV
76
; rgb_Vcoeff_12x4: times 2 dw RV, GV, 0, RV
77
; rgb_Vcoeff_3x56: times 2 dw BV, 0, GV, BV
78
79
; rgba_Ycoeff_rb: times 4 dw RY, BY
80
; rgba_Ycoeff_br: times 4 dw BY, RY
81
; rgba_Ycoeff_ga: times 4 dw GY, 0
82
; rgba_Ycoeff_ag: times 4 dw 0, GY
83
; rgba_Ucoeff_rb: times 4 dw RU, BU
84
; rgba_Ucoeff_br: times 4 dw BU, RU
85
; rgba_Ucoeff_ga: times 4 dw GU, 0
86
; rgba_Ucoeff_ag: times 4 dw 0, GU
87
; rgba_Vcoeff_rb: times 4 dw RV, BV
88
; rgba_Vcoeff_br: times 4 dw BV, RV
89
; rgba_Vcoeff_ga: times 4 dw GV, 0
90
; rgba_Vcoeff_ag: times 4 dw 0, GV
91
92
shuf_rgb_12x4: db 0, 0x80, 1, 0x80, 2, 0x80, 3, 0x80, \
93
6, 0x80, 7, 0x80, 8, 0x80, 9, 0x80
94
shuf_rgb_3x56: db 2, 0x80, 3, 0x80, 4, 0x80, 5, 0x80, \
95
8, 0x80, 9, 0x80, 10, 0x80, 11, 0x80
96
97
SECTION .text
98
99
;-----------------------------------------------------------------------------
100
; RGB to Y/UV.
101
;
102
; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w);
103
; and
104
; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src,
105
; const uint8_t *unused, int w);
106
;-----------------------------------------------------------------------------
107
108
; %1 = nr. of XMM registers
109
; %2 = rgb or bgr
110
%macro RGB24_TO_Y_FN 2-3
111
cglobal %2 %+ 24ToY, 6, 6, %1, dst, src, u1, u2, w, table
112
%if mmsize == 8
113
mova m5, [%2_Ycoeff_12x4]
114
mova m6, [%2_Ycoeff_3x56]
115
%define coeff1 m5
116
%define coeff2 m6
117
%elif ARCH_X86_64
118
mova m8, [%2_Ycoeff_12x4]
119
mova m9, [%2_Ycoeff_3x56]
120
%define coeff1 m8
121
%define coeff2 m9
122
%else ; x86-32 && mmsize == 16
123
%define coeff1 [%2_Ycoeff_12x4]
124
%define coeff2 [%2_Ycoeff_3x56]
125
%endif ; x86-32/64 && mmsize == 8/16
126
%if (ARCH_X86_64 || mmsize == 8) && %0 == 3
127
jmp mangle(private_prefix %+ _ %+ %3 %+ 24ToY %+ SUFFIX).body
128
%else ; (ARCH_X86_64 && %0 == 3) || mmsize == 8
129
.body:
130
%if cpuflag(ssse3)
131
mova m7, [shuf_rgb_12x4]
132
%define shuf_rgb1 m7
133
%if ARCH_X86_64
134
mova m10, [shuf_rgb_3x56]
135
%define shuf_rgb2 m10
136
%else ; x86-32
137
%define shuf_rgb2 [shuf_rgb_3x56]
138
%endif ; x86-32/64
139
%endif ; cpuflag(ssse3)
140
%if ARCH_X86_64
141
movsxd wq, wd
142
%endif
143
add wq, wq
144
add dstq, wq
145
neg wq
146
%if notcpuflag(ssse3)
147
pxor m7, m7
148
%endif ; !cpuflag(ssse3)
149
mova m4, [rgb_Yrnd]
150
.loop:
151
%if cpuflag(ssse3)
152
movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3]
153
movu m2, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7]
154
pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
155
pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
156
pshufb m3, m2, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
157
pshufb m2, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
158
%else ; !cpuflag(ssse3)
159
movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 }
160
movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 }
161
movd m2, [srcq+6] ; (byte) { B2, G2, R2, B3 }
162
movd m3, [srcq+8] ; (byte) { R2, B3, G3, R3 }
163
%if mmsize == 16 ; i.e. sse2
164
punpckldq m0, m2 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 }
165
punpckldq m1, m3 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 }
166
movd m2, [srcq+12] ; (byte) { B4, G4, R4, B5 }
167
movd m3, [srcq+14] ; (byte) { R4, B5, G5, R5 }
168
movd m5, [srcq+18] ; (byte) { B6, G6, R6, B7 }
169
movd m6, [srcq+20] ; (byte) { R6, B7, G7, R7 }
170
punpckldq m2, m5 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 }
171
punpckldq m3, m6 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 }
172
%endif ; mmsize == 16
173
punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
174
punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
175
punpcklbw m2, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
176
punpcklbw m3, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
177
%endif ; cpuflag(ssse3)
178
add srcq, 3 * mmsize / 2
179
pmaddwd m0, coeff1 ; (dword) { B0*BY + G0*GY, B1*BY, B2*BY + G2*GY, B3*BY }
180
pmaddwd m1, coeff2 ; (dword) { R0*RY, G1+GY + R1*RY, R2*RY, G3+GY + R3*RY }
181
pmaddwd m2, coeff1 ; (dword) { B4*BY + G4*GY, B5*BY, B6*BY + G6*GY, B7*BY }
182
pmaddwd m3, coeff2 ; (dword) { R4*RY, G5+GY + R5*RY, R6*RY, G7+GY + R7*RY }
183
paddd m0, m1 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[0-3]
184
paddd m2, m3 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[4-7]
185
paddd m0, m4 ; += rgb_Yrnd, i.e. (dword) { Y[0-3] }
186
paddd m2, m4 ; += rgb_Yrnd, i.e. (dword) { Y[4-7] }
187
psrad m0, 9
188
psrad m2, 9
189
packssdw m0, m2 ; (word) { Y[0-7] }
190
mova [dstq+wq], m0
191
add wq, mmsize
192
jl .loop
193
REP_RET
194
%endif ; (ARCH_X86_64 && %0 == 3) || mmsize == 8
195
%endmacro
196
197
; %1 = nr. of XMM registers
198
; %2 = rgb or bgr
199
%macro RGB24_TO_UV_FN 2-3
200
cglobal %2 %+ 24ToUV, 7, 7, %1, dstU, dstV, u1, src, u2, w, table
201
%if ARCH_X86_64
202
mova m8, [%2_Ucoeff_12x4]
203
mova m9, [%2_Ucoeff_3x56]
204
mova m10, [%2_Vcoeff_12x4]
205
mova m11, [%2_Vcoeff_3x56]
206
%define coeffU1 m8
207
%define coeffU2 m9
208
%define coeffV1 m10
209
%define coeffV2 m11
210
%else ; x86-32
211
%define coeffU1 [%2_Ucoeff_12x4]
212
%define coeffU2 [%2_Ucoeff_3x56]
213
%define coeffV1 [%2_Vcoeff_12x4]
214
%define coeffV2 [%2_Vcoeff_3x56]
215
%endif ; x86-32/64
216
%if ARCH_X86_64 && %0 == 3
217
jmp mangle(private_prefix %+ _ %+ %3 %+ 24ToUV %+ SUFFIX).body
218
%else ; ARCH_X86_64 && %0 == 3
219
.body:
220
%if cpuflag(ssse3)
221
mova m7, [shuf_rgb_12x4]
222
%define shuf_rgb1 m7
223
%if ARCH_X86_64
224
mova m12, [shuf_rgb_3x56]
225
%define shuf_rgb2 m12
226
%else ; x86-32
227
%define shuf_rgb2 [shuf_rgb_3x56]
228
%endif ; x86-32/64
229
%endif ; cpuflag(ssse3)
230
%if ARCH_X86_64
231
movsxd wq, dword r5m
232
%else ; x86-32
233
mov wq, r5m
234
%endif
235
add wq, wq
236
add dstUq, wq
237
add dstVq, wq
238
neg wq
239
mova m6, [rgb_UVrnd]
240
%if notcpuflag(ssse3)
241
pxor m7, m7
242
%endif
243
.loop:
244
%if cpuflag(ssse3)
245
movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3]
246
movu m4, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7]
247
pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
248
pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
249
%else ; !cpuflag(ssse3)
250
movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 }
251
movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 }
252
movd m4, [srcq+6] ; (byte) { B2, G2, R2, B3 }
253
movd m5, [srcq+8] ; (byte) { R2, B3, G3, R3 }
254
%if mmsize == 16
255
punpckldq m0, m4 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 }
256
punpckldq m1, m5 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 }
257
movd m4, [srcq+12] ; (byte) { B4, G4, R4, B5 }
258
movd m5, [srcq+14] ; (byte) { R4, B5, G5, R5 }
259
%endif ; mmsize == 16
260
punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
261
punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
262
%endif ; cpuflag(ssse3)
263
pmaddwd m2, m0, coeffV1 ; (dword) { B0*BV + G0*GV, B1*BV, B2*BV + G2*GV, B3*BV }
264
pmaddwd m3, m1, coeffV2 ; (dword) { R0*BV, G1*GV + R1*BV, R2*BV, G3*GV + R3*BV }
265
pmaddwd m0, coeffU1 ; (dword) { B0*BU + G0*GU, B1*BU, B2*BU + G2*GU, B3*BU }
266
pmaddwd m1, coeffU2 ; (dword) { R0*BU, G1*GU + R1*BU, R2*BU, G3*GU + R3*BU }
267
paddd m0, m1 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[0-3]
268
paddd m2, m3 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[0-3]
269
%if cpuflag(ssse3)
270
pshufb m5, m4, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
271
pshufb m4, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
272
%else ; !cpuflag(ssse3)
273
%if mmsize == 16
274
movd m1, [srcq+18] ; (byte) { B6, G6, R6, B7 }
275
movd m3, [srcq+20] ; (byte) { R6, B7, G7, R7 }
276
punpckldq m4, m1 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 }
277
punpckldq m5, m3 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 }
278
%endif ; mmsize == 16 && !cpuflag(ssse3)
279
punpcklbw m4, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
280
punpcklbw m5, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
281
%endif ; cpuflag(ssse3)
282
add srcq, 3 * mmsize / 2
283
pmaddwd m1, m4, coeffU1 ; (dword) { B4*BU + G4*GU, B5*BU, B6*BU + G6*GU, B7*BU }
284
pmaddwd m3, m5, coeffU2 ; (dword) { R4*BU, G5*GU + R5*BU, R6*BU, G7*GU + R7*BU }
285
pmaddwd m4, coeffV1 ; (dword) { B4*BV + G4*GV, B5*BV, B6*BV + G6*GV, B7*BV }
286
pmaddwd m5, coeffV2 ; (dword) { R4*BV, G5*GV + R5*BV, R6*BV, G7*GV + R7*BV }
287
paddd m1, m3 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[4-7]
288
paddd m4, m5 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[4-7]
289
paddd m0, m6 ; += rgb_UVrnd, i.e. (dword) { U[0-3] }
290
paddd m2, m6 ; += rgb_UVrnd, i.e. (dword) { V[0-3] }
291
paddd m1, m6 ; += rgb_UVrnd, i.e. (dword) { U[4-7] }
292
paddd m4, m6 ; += rgb_UVrnd, i.e. (dword) { V[4-7] }
293
psrad m0, 9
294
psrad m2, 9
295
psrad m1, 9
296
psrad m4, 9
297
packssdw m0, m1 ; (word) { U[0-7] }
298
packssdw m2, m4 ; (word) { V[0-7] }
299
%if mmsize == 8
300
mova [dstUq+wq], m0
301
mova [dstVq+wq], m2
302
%else ; mmsize == 16
303
mova [dstUq+wq], m0
304
mova [dstVq+wq], m2
305
%endif ; mmsize == 8/16
306
add wq, mmsize
307
jl .loop
308
REP_RET
309
%endif ; ARCH_X86_64 && %0 == 3
310
%endmacro
311
312
; %1 = nr. of XMM registers for rgb-to-Y func
313
; %2 = nr. of XMM registers for rgb-to-UV func
314
%macro RGB24_FUNCS 2
315
RGB24_TO_Y_FN %1, rgb
316
RGB24_TO_Y_FN %1, bgr, rgb
317
RGB24_TO_UV_FN %2, rgb
318
RGB24_TO_UV_FN %2, bgr, rgb
319
%endmacro
320
321
%if ARCH_X86_32
322
INIT_MMX mmx
323
RGB24_FUNCS 0, 0
324
%endif
325
326
INIT_XMM sse2
327
RGB24_FUNCS 10, 12
328
329
INIT_XMM ssse3
330
RGB24_FUNCS 11, 13
331
332
%if HAVE_AVX_EXTERNAL
333
INIT_XMM avx
334
RGB24_FUNCS 11, 13
335
%endif
336
337
; %1 = nr. of XMM registers
338
; %2-5 = rgba, bgra, argb or abgr (in individual characters)
339
%macro RGB32_TO_Y_FN 5-6
340
cglobal %2%3%4%5 %+ ToY, 6, 6, %1, dst, src, u1, u2, w, table
341
mova m5, [rgba_Ycoeff_%2%4]
342
mova m6, [rgba_Ycoeff_%3%5]
343
%if %0 == 6
344
jmp mangle(private_prefix %+ _ %+ %6 %+ ToY %+ SUFFIX).body
345
%else ; %0 == 6
346
.body:
347
%if ARCH_X86_64
348
movsxd wq, wd
349
%endif
350
add wq, wq
351
sub wq, mmsize - 1
352
lea srcq, [srcq+wq*2]
353
add dstq, wq
354
neg wq
355
mova m4, [rgb_Yrnd]
356
pcmpeqb m7, m7
357
psrlw m7, 8 ; (word) { 0x00ff } x4
358
.loop:
359
; FIXME check alignment and use mova
360
movu m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3]
361
movu m2, [srcq+wq*2+mmsize] ; (byte) { Bx, Gx, Rx, xx }[4-7]
362
DEINTB 1, 0, 3, 2, 7 ; (word) { Gx, xx (m0/m2) or Bx, Rx (m1/m3) }[0-3]/[4-7]
363
pmaddwd m1, m5 ; (dword) { Bx*BY + Rx*RY }[0-3]
364
pmaddwd m0, m6 ; (dword) { Gx*GY }[0-3]
365
pmaddwd m3, m5 ; (dword) { Bx*BY + Rx*RY }[4-7]
366
pmaddwd m2, m6 ; (dword) { Gx*GY }[4-7]
367
paddd m0, m4 ; += rgb_Yrnd
368
paddd m2, m4 ; += rgb_Yrnd
369
paddd m0, m1 ; (dword) { Y[0-3] }
370
paddd m2, m3 ; (dword) { Y[4-7] }
371
psrad m0, 9
372
psrad m2, 9
373
packssdw m0, m2 ; (word) { Y[0-7] }
374
mova [dstq+wq], m0
375
add wq, mmsize
376
jl .loop
377
sub wq, mmsize - 1
378
jz .end
379
add srcq, 2*mmsize - 2
380
add dstq, mmsize - 1
381
.loop2:
382
movd m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3]
383
DEINTB 1, 0, 3, 2, 7 ; (word) { Gx, xx (m0/m2) or Bx, Rx (m1/m3) }[0-3]/[4-7]
384
pmaddwd m1, m5 ; (dword) { Bx*BY + Rx*RY }[0-3]
385
pmaddwd m0, m6 ; (dword) { Gx*GY }[0-3]
386
paddd m0, m4 ; += rgb_Yrnd
387
paddd m0, m1 ; (dword) { Y[0-3] }
388
psrad m0, 9
389
packssdw m0, m0 ; (word) { Y[0-7] }
390
movd [dstq+wq], m0
391
add wq, 2
392
jl .loop2
393
.end:
394
REP_RET
395
%endif ; %0 == 3
396
%endmacro
397
398
; %1 = nr. of XMM registers
399
; %2-5 = rgba, bgra, argb or abgr (in individual characters)
400
%macro RGB32_TO_UV_FN 5-6
401
cglobal %2%3%4%5 %+ ToUV, 7, 7, %1, dstU, dstV, u1, src, u2, w, table
402
%if ARCH_X86_64
403
mova m8, [rgba_Ucoeff_%2%4]
404
mova m9, [rgba_Ucoeff_%3%5]
405
mova m10, [rgba_Vcoeff_%2%4]
406
mova m11, [rgba_Vcoeff_%3%5]
407
%define coeffU1 m8
408
%define coeffU2 m9
409
%define coeffV1 m10
410
%define coeffV2 m11
411
%else ; x86-32
412
%define coeffU1 [rgba_Ucoeff_%2%4]
413
%define coeffU2 [rgba_Ucoeff_%3%5]
414
%define coeffV1 [rgba_Vcoeff_%2%4]
415
%define coeffV2 [rgba_Vcoeff_%3%5]
416
%endif ; x86-64/32
417
%if ARCH_X86_64 && %0 == 6
418
jmp mangle(private_prefix %+ _ %+ %6 %+ ToUV %+ SUFFIX).body
419
%else ; ARCH_X86_64 && %0 == 6
420
.body:
421
%if ARCH_X86_64
422
movsxd wq, dword r5m
423
%else ; x86-32
424
mov wq, r5m
425
%endif
426
add wq, wq
427
sub wq, mmsize - 1
428
add dstUq, wq
429
add dstVq, wq
430
lea srcq, [srcq+wq*2]
431
neg wq
432
pcmpeqb m7, m7
433
psrlw m7, 8 ; (word) { 0x00ff } x4
434
mova m6, [rgb_UVrnd]
435
.loop:
436
; FIXME check alignment and use mova
437
movu m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3]
438
movu m4, [srcq+wq*2+mmsize] ; (byte) { Bx, Gx, Rx, xx }[4-7]
439
DEINTB 1, 0, 5, 4, 7 ; (word) { Gx, xx (m0/m4) or Bx, Rx (m1/m5) }[0-3]/[4-7]
440
pmaddwd m3, m1, coeffV1 ; (dword) { Bx*BV + Rx*RV }[0-3]
441
pmaddwd m2, m0, coeffV2 ; (dword) { Gx*GV }[0-3]
442
pmaddwd m1, coeffU1 ; (dword) { Bx*BU + Rx*RU }[0-3]
443
pmaddwd m0, coeffU2 ; (dword) { Gx*GU }[0-3]
444
paddd m3, m6 ; += rgb_UVrnd
445
paddd m1, m6 ; += rgb_UVrnd
446
paddd m2, m3 ; (dword) { V[0-3] }
447
paddd m0, m1 ; (dword) { U[0-3] }
448
pmaddwd m3, m5, coeffV1 ; (dword) { Bx*BV + Rx*RV }[4-7]
449
pmaddwd m1, m4, coeffV2 ; (dword) { Gx*GV }[4-7]
450
pmaddwd m5, coeffU1 ; (dword) { Bx*BU + Rx*RU }[4-7]
451
pmaddwd m4, coeffU2 ; (dword) { Gx*GU }[4-7]
452
paddd m3, m6 ; += rgb_UVrnd
453
paddd m5, m6 ; += rgb_UVrnd
454
psrad m0, 9
455
paddd m1, m3 ; (dword) { V[4-7] }
456
paddd m4, m5 ; (dword) { U[4-7] }
457
psrad m2, 9
458
psrad m4, 9
459
psrad m1, 9
460
packssdw m0, m4 ; (word) { U[0-7] }
461
packssdw m2, m1 ; (word) { V[0-7] }
462
%if mmsize == 8
463
mova [dstUq+wq], m0
464
mova [dstVq+wq], m2
465
%else ; mmsize == 16
466
mova [dstUq+wq], m0
467
mova [dstVq+wq], m2
468
%endif ; mmsize == 8/16
469
add wq, mmsize
470
jl .loop
471
sub wq, mmsize - 1
472
jz .end
473
add srcq , 2*mmsize - 2
474
add dstUq, mmsize - 1
475
add dstVq, mmsize - 1
476
.loop2:
477
movd m0, [srcq+wq*2] ; (byte) { Bx, Gx, Rx, xx }[0-3]
478
DEINTB 1, 0, 5, 4, 7 ; (word) { Gx, xx (m0/m4) or Bx, Rx (m1/m5) }[0-3]/[4-7]
479
pmaddwd m3, m1, coeffV1 ; (dword) { Bx*BV + Rx*RV }[0-3]
480
pmaddwd m2, m0, coeffV2 ; (dword) { Gx*GV }[0-3]
481
pmaddwd m1, coeffU1 ; (dword) { Bx*BU + Rx*RU }[0-3]
482
pmaddwd m0, coeffU2 ; (dword) { Gx*GU }[0-3]
483
paddd m3, m6 ; += rgb_UVrnd
484
paddd m1, m6 ; += rgb_UVrnd
485
paddd m2, m3 ; (dword) { V[0-3] }
486
paddd m0, m1 ; (dword) { U[0-3] }
487
psrad m0, 9
488
psrad m2, 9
489
packssdw m0, m0 ; (word) { U[0-7] }
490
packssdw m2, m2 ; (word) { V[0-7] }
491
movd [dstUq+wq], m0
492
movd [dstVq+wq], m2
493
add wq, 2
494
jl .loop2
495
.end:
496
REP_RET
497
%endif ; ARCH_X86_64 && %0 == 3
498
%endmacro
499
500
; %1 = nr. of XMM registers for rgb-to-Y func
501
; %2 = nr. of XMM registers for rgb-to-UV func
502
%macro RGB32_FUNCS 2
503
RGB32_TO_Y_FN %1, r, g, b, a
504
RGB32_TO_Y_FN %1, b, g, r, a, rgba
505
RGB32_TO_Y_FN %1, a, r, g, b, rgba
506
RGB32_TO_Y_FN %1, a, b, g, r, rgba
507
508
RGB32_TO_UV_FN %2, r, g, b, a
509
RGB32_TO_UV_FN %2, b, g, r, a, rgba
510
RGB32_TO_UV_FN %2, a, r, g, b, rgba
511
RGB32_TO_UV_FN %2, a, b, g, r, rgba
512
%endmacro
513
514
%if ARCH_X86_32
515
INIT_MMX mmx
516
RGB32_FUNCS 0, 0
517
%endif
518
519
INIT_XMM sse2
520
RGB32_FUNCS 8, 12
521
522
%if HAVE_AVX_EXTERNAL
523
INIT_XMM avx
524
RGB32_FUNCS 8, 12
525
%endif
526
527
;-----------------------------------------------------------------------------
528
; YUYV/UYVY/NV12/NV21 packed pixel shuffling.
529
;
530
; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w);
531
; and
532
; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src,
533
; const uint8_t *unused, int w);
534
;-----------------------------------------------------------------------------
535
536
; %1 = a (aligned) or u (unaligned)
537
; %2 = yuyv or uyvy
538
%macro LOOP_YUYV_TO_Y 2
539
.loop_%1:
540
mov%1 m0, [srcq+wq*2] ; (byte) { Y0, U0, Y1, V0, ... }
541
mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
542
%ifidn %2, yuyv
543
pand m0, m2 ; (word) { Y0, Y1, ..., Y7 }
544
pand m1, m2 ; (word) { Y8, Y9, ..., Y15 }
545
%else ; uyvy
546
psrlw m0, 8 ; (word) { Y0, Y1, ..., Y7 }
547
psrlw m1, 8 ; (word) { Y8, Y9, ..., Y15 }
548
%endif ; yuyv/uyvy
549
packuswb m0, m1 ; (byte) { Y0, ..., Y15 }
550
mova [dstq+wq], m0
551
add wq, mmsize
552
jl .loop_%1
553
REP_RET
554
%endmacro
555
556
; %1 = nr. of XMM registers
557
; %2 = yuyv or uyvy
558
; %3 = if specified, it means that unaligned and aligned code in loop
559
; will be the same (i.e. YUYV+AVX), and thus we don't need to
560
; split the loop in an aligned and unaligned case
561
%macro YUYV_TO_Y_FN 2-3
562
cglobal %2ToY, 5, 5, %1, dst, unused0, unused1, src, w
563
%if ARCH_X86_64
564
movsxd wq, wd
565
%endif
566
add dstq, wq
567
%if mmsize == 16
568
test srcq, 15
569
%endif
570
lea srcq, [srcq+wq*2]
571
%ifidn %2, yuyv
572
pcmpeqb m2, m2 ; (byte) { 0xff } x 16
573
psrlw m2, 8 ; (word) { 0x00ff } x 8
574
%endif ; yuyv
575
%if mmsize == 16
576
jnz .loop_u_start
577
neg wq
578
LOOP_YUYV_TO_Y a, %2
579
.loop_u_start:
580
neg wq
581
LOOP_YUYV_TO_Y u, %2
582
%else ; mmsize == 8
583
neg wq
584
LOOP_YUYV_TO_Y a, %2
585
%endif ; mmsize == 8/16
586
%endmacro
587
588
; %1 = a (aligned) or u (unaligned)
589
; %2 = yuyv or uyvy
590
%macro LOOP_YUYV_TO_UV 2
591
.loop_%1:
592
%ifidn %2, yuyv
593
mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
594
mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
595
psrlw m0, 8 ; (word) { U0, V0, ..., U3, V3 }
596
psrlw m1, 8 ; (word) { U4, V4, ..., U7, V7 }
597
%else ; uyvy
598
%if cpuflag(avx)
599
vpand m0, m2, [srcq+wq*4] ; (word) { U0, V0, ..., U3, V3 }
600
vpand m1, m2, [srcq+wq*4+mmsize] ; (word) { U4, V4, ..., U7, V7 }
601
%else
602
mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
603
mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
604
pand m0, m2 ; (word) { U0, V0, ..., U3, V3 }
605
pand m1, m2 ; (word) { U4, V4, ..., U7, V7 }
606
%endif
607
%endif ; yuyv/uyvy
608
packuswb m0, m1 ; (byte) { U0, V0, ..., U7, V7 }
609
pand m1, m0, m2 ; (word) { U0, U1, ..., U7 }
610
psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
611
%if mmsize == 16
612
packuswb m1, m0 ; (byte) { U0, ... U7, V1, ... V7 }
613
movh [dstUq+wq], m1
614
movhps [dstVq+wq], m1
615
%else ; mmsize == 8
616
packuswb m1, m1 ; (byte) { U0, ... U3 }
617
packuswb m0, m0 ; (byte) { V0, ... V3 }
618
movh [dstUq+wq], m1
619
movh [dstVq+wq], m0
620
%endif ; mmsize == 8/16
621
add wq, mmsize / 2
622
jl .loop_%1
623
REP_RET
624
%endmacro
625
626
; %1 = nr. of XMM registers
627
; %2 = yuyv or uyvy
628
; %3 = if specified, it means that unaligned and aligned code in loop
629
; will be the same (i.e. UYVY+AVX), and thus we don't need to
630
; split the loop in an aligned and unaligned case
631
%macro YUYV_TO_UV_FN 2-3
632
cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w
633
%if ARCH_X86_64
634
movsxd wq, dword r5m
635
%else ; x86-32
636
mov wq, r5m
637
%endif
638
add dstUq, wq
639
add dstVq, wq
640
%if mmsize == 16 && %0 == 2
641
test srcq, 15
642
%endif
643
lea srcq, [srcq+wq*4]
644
pcmpeqb m2, m2 ; (byte) { 0xff } x 16
645
psrlw m2, 8 ; (word) { 0x00ff } x 8
646
; NOTE: if uyvy+avx, u/a are identical
647
%if mmsize == 16 && %0 == 2
648
jnz .loop_u_start
649
neg wq
650
LOOP_YUYV_TO_UV a, %2
651
.loop_u_start:
652
neg wq
653
LOOP_YUYV_TO_UV u, %2
654
%else ; mmsize == 8
655
neg wq
656
LOOP_YUYV_TO_UV a, %2
657
%endif ; mmsize == 8/16
658
%endmacro
659
660
; %1 = a (aligned) or u (unaligned)
661
; %2 = nv12 or nv21
662
%macro LOOP_NVXX_TO_UV 2
663
.loop_%1:
664
mov%1 m0, [srcq+wq*2] ; (byte) { U0, V0, U1, V1, ... }
665
mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { U8, V8, U9, V9, ... }
666
pand m2, m0, m5 ; (word) { U0, U1, ..., U7 }
667
pand m3, m1, m5 ; (word) { U8, U9, ..., U15 }
668
psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
669
psrlw m1, 8 ; (word) { V8, V9, ..., V15 }
670
packuswb m2, m3 ; (byte) { U0, ..., U15 }
671
packuswb m0, m1 ; (byte) { V0, ..., V15 }
672
%ifidn %2, nv12
673
mova [dstUq+wq], m2
674
mova [dstVq+wq], m0
675
%else ; nv21
676
mova [dstVq+wq], m2
677
mova [dstUq+wq], m0
678
%endif ; nv12/21
679
add wq, mmsize
680
jl .loop_%1
681
REP_RET
682
%endmacro
683
684
; %1 = nr. of XMM registers
685
; %2 = nv12 or nv21
686
%macro NVXX_TO_UV_FN 2
687
cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w
688
%if ARCH_X86_64
689
movsxd wq, dword r5m
690
%else ; x86-32
691
mov wq, r5m
692
%endif
693
add dstUq, wq
694
add dstVq, wq
695
%if mmsize == 16
696
test srcq, 15
697
%endif
698
lea srcq, [srcq+wq*2]
699
pcmpeqb m5, m5 ; (byte) { 0xff } x 16
700
psrlw m5, 8 ; (word) { 0x00ff } x 8
701
%if mmsize == 16
702
jnz .loop_u_start
703
neg wq
704
LOOP_NVXX_TO_UV a, %2
705
.loop_u_start:
706
neg wq
707
LOOP_NVXX_TO_UV u, %2
708
%else ; mmsize == 8
709
neg wq
710
LOOP_NVXX_TO_UV a, %2
711
%endif ; mmsize == 8/16
712
%endmacro
713
714
%if ARCH_X86_32
715
INIT_MMX mmx
716
YUYV_TO_Y_FN 0, yuyv
717
YUYV_TO_Y_FN 0, uyvy
718
YUYV_TO_UV_FN 0, yuyv
719
YUYV_TO_UV_FN 0, uyvy
720
NVXX_TO_UV_FN 0, nv12
721
NVXX_TO_UV_FN 0, nv21
722
%endif
723
724
INIT_XMM sse2
725
YUYV_TO_Y_FN 3, yuyv
726
YUYV_TO_Y_FN 2, uyvy
727
YUYV_TO_UV_FN 3, yuyv
728
YUYV_TO_UV_FN 3, uyvy
729
NVXX_TO_UV_FN 5, nv12
730
NVXX_TO_UV_FN 5, nv21
731
732
%if HAVE_AVX_EXTERNAL
733
INIT_XMM avx
734
; in theory, we could write a yuy2-to-y using vpand (i.e. AVX), but
735
; that's not faster in practice
736
YUYV_TO_UV_FN 3, yuyv
737
YUYV_TO_UV_FN 3, uyvy, 1
738
NVXX_TO_UV_FN 5, nv12
739
NVXX_TO_UV_FN 5, nv21
740
%endif
741
742