/* Mode selection routines, select the least SATD cost mode for each lowres
* macroblock. When measuring B slices, this includes measuring the cost of
* three bidir modes. */
/* Four threads cooperatively measure 8x8 BIDIR cost with SATD */
int bidir_satd_8x8_ii_coop4( read_only image2d_t fenc_lowres,
int2 fencpos,
read_only image2d_t fref0_planes,
int2 qpos0,
read_only image2d_t fref1_planes,
int2 qpos1,
int weight,
local sum2_t *tmpp,
int idx )
{
volatile local sum2_t( *tmp )[4] = (volatile local sum2_t( * )[4])tmpp
sum2_t b0, b1, b2, b3
sum2_t sum = 0
// fencpos is full-pel position of original MB
// qpos0 is qpel position within reference frame 0
// qpos1 is qpel position within reference frame 1
int2 fref0Apos = (int2)(qpos0.x>>2, qpos0.y>>2)
int hpel0A = ((qpos0.x&2)>>1) + (qpos0.y&2)
int2 qpos0B = (int2)qpos0 + (int2)(((qpos0.x&1)<<1), ((qpos0.y&1)<<1))
int2 fref0Bpos = (int2)(qpos0B.x>>2, qpos0B.y>>2)
int hpel0B = ((qpos0B.x&2)>>1) + (qpos0B.y&2)
int2 fref1Apos = (int2)(qpos1.x>>2, qpos1.y>>2)
int hpel1A = ((qpos1.x&2)>>1) + (qpos1.y&2)
int2 qpos1B = (int2)qpos1 + (int2)(((qpos1.x&1)<<1), ((qpos1.y&1)<<1))
int2 fref1Bpos = (int2)(qpos1B.x>>2, qpos1B.y>>2)
int hpel1B = ((qpos1B.x&2)>>1) + (qpos1B.y&2)
uint mask_shift0A = 8 * hpel0A, mask_shift0B = 8 * hpel0B
uint mask_shift1A = 8 * hpel1A, mask_shift1B = 8 * hpel1B
uint vA, vB
uint enc, ref0, ref1
uint a0, a1
const int weight2 = 64 - weight
#define READ_BIDIR_DIFF( OUT, X )\
enc = read_imageui( fenc_lowres, sampler, fencpos + (int2)(X, idx) ).s0
vA = (read_imageui( fref0_planes, sampler, fref0Apos + (int2)(X, idx) ).s0 >> mask_shift0A) & 0xFF
vB = (read_imageui( fref0_planes, sampler, fref0Bpos + (int2)(X, idx) ).s0 >> mask_shift0B) & 0xFF
ref0 = rhadd( vA, vB )
vA = (read_imageui( fref1_planes, sampler, fref1Apos + (int2)(X, idx) ).s0 >> mask_shift1A) & 0xFF
vB = (read_imageui( fref1_planes, sampler, fref1Bpos + (int2)(X, idx) ).s0 >> mask_shift1B) & 0xFF
ref1 = rhadd( vA, vB )
OUT = enc - ((ref0 * weight + ref1 * weight2 + (1 << 5)) >> 6)
#define READ_DIFF_EX( OUT, a, b )\
READ_BIDIR_DIFF( a0, a )
READ_BIDIR_DIFF( a1, b )
OUT = a0 + (a1<<BITS_PER_SUM)
#define ROW_8x4_SATD( a, b, c )\
fencpos.y += a
fref0Apos.y += b
fref0Bpos.y += b
fref1Apos.y += c
fref1Bpos.y += c
READ_DIFF_EX( b0, 0, 4 )
READ_DIFF_EX( b1, 1, 5 )
READ_DIFF_EX( b2, 2, 6 )
READ_DIFF_EX( b3, 3, 7 )
HADAMARD4( tmp[idx][0], tmp[idx][1], tmp[idx][2], tmp[idx][3], b0, b1, b2, b3 )
HADAMARD4( b0, b1, b2, b3, tmp[0][idx], tmp[1][idx], tmp[2][idx], tmp[3][idx] )
sum += abs2( b0 ) + abs2( b1 ) + abs2( b2 ) + abs2( b3 )
ROW_8x4_SATD( 0, 0, 0 )
ROW_8x4_SATD( 4, 4, 4 )
#undef READ_BIDIR_DIFF
#undef READ_DIFF_EX
#undef ROW_8x4_SATD
return (((sum_t)sum) + (sum>>BITS_PER_SUM)) >> 1
}
/*
* mode selection - pick the least cost partition type for each 8x8 macroblock.
* Intra, list0 or list1. When measuring a B slice, also test three bidir
* possibilities.
*
* fenc_lowres_mvs[0|1] and fenc_lowres_mv_costs[0|1] are large buffers that
* hold many frames worth of motion vectors. We must offset into the correct
* location for this frame's vectors:
*
* CPU equivalent: fenc->lowres_mvs[0][b - p0 - 1]
* GPU equivalent: fenc_lowres_mvs0[(b - p0 - 1) * mb_count]
*
* global launch dimensions for P slice estimate: [mb_width, mb_height]
* global launch dimensions for B slice estimate: [mb_width * 4, mb_height]
*/
kernel void mode_selection( read_only image2d_t fenc_lowres,
read_only image2d_t fref0_planes,
read_only image2d_t fref1_planes,
const global short2 *fenc_lowres_mvs0,
const global short2 *fenc_lowres_mvs1,
const global short2 *fref1_lowres_mvs0,
const global int16_t *fenc_lowres_mv_costs0,
const global int16_t *fenc_lowres_mv_costs1,
const global uint16_t *fenc_intra_cost,
global uint16_t *lowres_costs,
global int *frame_stats,
local int16_t *cost_local,
local sum2_t *satd_local,
int mb_width,
int bipred_weight,
int dist_scale_factor,
int b,
int p0,
int p1,
int lambda )
{
int mb_x = get_global_id( 0 )
int b_bidir = b < p1
if( b_bidir )
{
/* when mode_selection is run for B frames, it must perform BIDIR SATD
* measurements, so it is launched with four times as many threads in
* order to spread the work around more of the GPU. And it can add
* padding threads in the X direction. */
mb_x >>= 2
if( mb_x >= mb_width )
return
}
int mb_y = get_global_id( 1 )
int mb_height = get_global_size( 1 )
int mb_count = mb_width * mb_height
int mb_xy = mb_x + mb_y * mb_width
/* Initialize int frame_stats[4] for next kernel (sum_inter_cost) */
if( mb_x < 4 && mb_y == 0 )
frame_stats[mb_x] = 0
int bcost = COST_MAX
int list_used = 0
if( !b_bidir )
{
int icost = fenc_intra_cost[mb_xy]
COPY2_IF_LT( bcost, icost, list_used, 0 )
}
if( b != p0 )
{
int mv_cost0 = fenc_lowres_mv_costs0[(b - p0 - 1) * mb_count + mb_xy]
COPY2_IF_LT( bcost, mv_cost0, list_used, 1 )
}
if( b != p1 )
{
int mv_cost1 = fenc_lowres_mv_costs1[(p1 - b - 1) * mb_count + mb_xy]
COPY2_IF_LT( bcost, mv_cost1, list_used, 2 )
}
if( b_bidir )
{
int2 coord = (int2)(mb_x, mb_y) << 3
int mb_i = get_global_id( 0 ) & 3
int mb_in_group = get_local_id( 1 ) * (get_local_size( 0 ) >> 2) + (get_local_id( 0 ) >> 2)
cost_local += mb_in_group * 4
satd_local += mb_in_group * 16
#define TRY_BIDIR( mv0, mv1, penalty )\
{\
int2 qpos0 = (int2)((coord.x<<2) + mv0.x, (coord.y<<2) + mv0.y)
int2 qpos1 = (int2)((coord.x<<2) + mv1.x, (coord.y<<2) + mv1.y)
cost_local[mb_i] = bidir_satd_8x8_ii_coop4( fenc_lowres, coord, fref0_planes, qpos0, fref1_planes, qpos1, bipred_weight, satd_local, mb_i )
int cost = cost_local[0] + cost_local[1] + cost_local[2] + cost_local[3]
COPY2_IF_LT( bcost, penalty * lambda + cost, list_used, 3 )
}
/* temporal prediction */
short2 dmv0, dmv1
short2 mvr = fref1_lowres_mvs0[mb_xy]
dmv0 = (mvr * (short) dist_scale_factor + (short) 128) >> (short) 8
dmv1 = dmv0 - mvr
TRY_BIDIR( dmv0, dmv1, 0 )
if( as_uint( dmv0 ) || as_uint( dmv1 ) )
{
/* B-direct prediction */
dmv0 = 0
TRY_BIDIR( dmv0, dmv1, 0 )
}
/* L0+L1 prediction */
dmv0 = fenc_lowres_mvs0[(b - p0 - 1) * mb_count + mb_xy]
dmv1 = fenc_lowres_mvs1[(p1 - b - 1) * mb_count + mb_xy]
TRY_BIDIR( dmv0, dmv1, 5 )
#undef TRY_BIDIR
}
lowres_costs[mb_xy] = min( bcost, LOWRES_COST_MASK ) + (list_used << LOWRES_COST_SHIFT)
}
/*
* parallel sum inter costs
*
* global launch dimensions: [256, mb_height]
*/
kernel void sum_inter_cost( const global uint16_t *fenc_lowres_costs,
const global uint16_t *inv_qscale_factor,
global int *fenc_row_satds,
global int *frame_stats,
int mb_width,
int bframe_bias,
int b,
int p0,
int p1 )
{
int y = get_global_id( 1 )
int mb_height = get_global_size( 1 )
int row_satds = 0
int cost_est = 0
int cost_est_aq = 0
int intra_mbs = 0
for( int x = get_global_id( 0 )
{
int mb_xy = x + y * mb_width
int cost = fenc_lowres_costs[mb_xy] & LOWRES_COST_MASK
int list = fenc_lowres_costs[mb_xy] >> LOWRES_COST_SHIFT
int b_frame_score_mb = (x > 0 && x < mb_width - 1 && y > 0 && y < mb_height - 1) || mb_width <= 2 || mb_height <= 2
if( list == 0 && b_frame_score_mb )
intra_mbs++
int cost_aq = (cost * inv_qscale_factor[mb_xy] + 128) >> 8
row_satds += cost_aq
if( b_frame_score_mb )
{
cost_est += cost
cost_est_aq += cost_aq
}
}
local int buffer[256]
int x = get_global_id( 0 )
row_satds = parallel_sum( row_satds, x, buffer )
cost_est = parallel_sum( cost_est, x, buffer )
cost_est_aq = parallel_sum( cost_est_aq, x, buffer )
intra_mbs = parallel_sum( intra_mbs, x, buffer )
if( b != p1 )
// Use floating point math to avoid 32bit integer overflow conditions
cost_est = (int)((float)cost_est * 100.0f / (120.0f + (float)bframe_bias))
if( get_global_id( 0 ) == 0 )
{
fenc_row_satds[y] = row_satds
atomic_add( frame_stats + COST_EST, cost_est )
atomic_add( frame_stats + COST_EST_AQ, cost_est_aq )
atomic_add( frame_stats + INTRA_MBS, intra_mbs )
}
}