Kernel: Python 3
In [2]:
##Example 2: Spoken word recognition
In [3]:
Out[3]:
Recommended beta min = 5.391
In [4]:
In [5]:
Out[5]:
R[0,1,2] R[0,1] R[1,2]
W[1] 0.680110 0.132822 0.138200
W[2] 0.433897 0.131864 0.130456
W[3] 0.325543 0.135792 0.129669
W[4] 0.210912 0.127382 0.146636
A 0.193579 0.816680 0.205851
B 0.199245 0.207040 0.757427
C 0.184637 0.197060 0.377702
D 0.191011 0.294651 0.221406
E 0.189172 0.263287 0.206670
F 0.202317 0.209870 0.279746
['W[1]/R[0,1,2]', 'A/R[0,1]', 'B/R[1,2]']
R[0,1,2] R[0,1] R[1,2]
W[1] 0.958052 0.061416 0.058309
W[2] 0.119934 0.063364 0.065626
W[3] 0.121456 0.049999 0.053922
W[4] 0.061953 0.063937 0.054879
A 0.084248 0.962637 0.089404
B 0.080594 0.078881 0.966036
C 0.083815 0.084522 0.100514
D 0.084277 0.100529 0.096263
E 0.081234 0.092193 0.089884
F 0.090120 0.086231 0.089789
['W[1]/R[0,1,2]', 'A/R[0,1]', 'B/R[1,2]']
In [6]:
In [7]:
In [8]:
In [8]:
Out[8]:
##Example 3: Garden Path
In [9]:
In [10]:
Out[10]:
Recommended beta min = 4.928
In [11]:
In [12]:
Out[12]:
R[0,1,2] R[0,1] R[1,2]
S[1] 0.766261 0.039014 0.043890
S[2] 0.683266 0.041443 0.033571
A 0.055800 0.989534 0.050274
B 0.049275 0.067513 0.707973
C 0.052004 0.056459 0.734532
['S[1]/R[0,1,2]', 'A/R[0,1]', 'C/R[1,2]']
R[0,1,2] R[0,1] R[1,2]
S[1] 0.032740 0.013211 0.013763
S[2] 0.991915 0.012883 0.005620
A 0.020981 0.992261 0.019592
B 0.012590 0.020289 0.015859
C 0.023807 0.009301 0.993357
['S[2]/R[0,1,2]', 'A/R[0,1]', 'C/R[1,2]']
##Example 4: Local Coherence
In [ ]: