� �g�Uc @` s� d Z d d l m Z m Z m Z m Z d d l Z d d l m Z d d l m Z m Z m Z m Z d d l m Z d d l m Z d e f d � � YZ d S( u4 Copyright 2015 Roger R Labbe Jr. FilterPy library. http://github.com/rlabbe/filterpy Documentation at: https://filterpy.readthedocs.org Supporting book at: https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python This is licensed under an MIT license. See the readme.MD file for more information. i ( t absolute_importt divisiont print_functiont unicode_literalsN( t inv( t dott zerost eyet outer( t multivariate_normal( t dot3t EnsembleKalmanFilterc B` s5 e Z d Z d � Z d � Z d d � Z d � Z RS( u� This implements the ensemble Kalman filter (EnKF). The EnKF uses an ensemble of hundreds to thousands of state vectors that are randomly sampled around the estimate, and adds perturbations at each update and predict step. It is useful for extremely large systems such as found in hydrophysics. As such, this class is admittedly a toy as it is far too slow with large N. There are many versions of this sort of this filter. This formulation is due to Crassidis and Junkins [1]. It works with both linear and nonlinear systems. **References** - [1] John L Crassidis and John L. Junkins. "Optimal Estimation of Dynamic Systems. CRC Press, second edition. 2012. pp, 257-9. c C` s� | d k s t � t | � | _ | | _ | | _ | | _ | | _ | | _ t | j � | _ t | j � | _ d g | j | _ | j | | � d S( u� Create a Kalman filter. You are responsible for setting the various state variables to reasonable values; the defaults below will not give you a functional filter. **Parameters** x : np.array(dim_z) state mean P : np.array((dim_x, dim_x)) covariance of the state dim_z : int Number of of measurement inputs. For example, if the sensor provides you with position in (x,y), dim_z would be 2. dt : float time step in seconds N : int number of sigma points (ensembles). Must be greater than 1. hx : function hx(x) Measurement function. May be linear or nonlinear - converts state x into a measurement. Return must be an np.array of the same dimensionality as the measurement vector. fx : function fx(x, dt) State transition function. May be linear or nonlinear. Projects state x into the next time period. Returns the projected state x. **Example** .. code:: def hx(x): return np.array([x[0]]) F = np.array([[1., 1.], [0., 1.]]) def fx(x, dt): return np.dot(F, x) x = np.array([0., 1.]) P = np.eye(2) * 100. dt = 0.1 f = EnKF(x=x, P=P, dim_z=1, dt=dt, N=8, hx=hx, fx=fx) std_noise = 3. f.R *= std_noise**2 f.Q = Q_discrete_white_noise(2, dt, .01) while True: z = read_sensor() f.predict() f.update(np.asarray([z])) i N( t AssertionErrort lent dim_xt dim_zt dtt Nt hxt fxR t Qt Rt meant initialize( t selft xt PR R R R R ( ( s+ ./filterpy/kalman/ensemble_kalman_filter.pyt __init__. s = c C` sL | j d k s t � t d | d | d | j � | _ | | _ | | _ d S( ua Initializes the filter with the specified mean and covariance. Only need to call this if you are using the filter to filter more than one set of data; this is called by __init__ **Parameters** x : np.array(dim_z) state mean P : np.array((dim_x, dim_x)) covariance of the state i R t covt sizeN( t ndimR R R t sigmasR R ( R R R ( ( s+ ./filterpy/kalman/ensemble_kalman_filter.pyR z s ! c C` s | d k r d S| d k r( | j } n t j | � rM t | j � | } n | j } t | � } t | | f � } x. t | � D] } | j | j | � | | <q� Wt j | d d �} d } x+ | D]# } | | } | t | | � 7} q� W| | d | } d } x= t | � D]/ } | t | j | | j | | | � 7} qW| | d } t | t | � � } t d g | | | � } x@ t | � D]2 } | j | c t | | | | | | � 7<q�Wt j | j d d �| _ | j t | | | j � | _ d S( uk Add a new measurement (z) to the kalman filter. If z is None, nothing is changed. **Parameters** z : np.array measurement for this update. R : np.array, scalar, or None Optionally provide R to override the measurement noise for this one call, otherwise self.R will be used. Nt axisi i ( t NoneR t npt isscalarR R R R R t rangeR R R R R R R R R R t T( R t zR R R t sigmas_ht it z_meant P_zzt sigmat st P_xzt Kt e_r( ( s+ ./filterpy/kalman/ensemble_kalman_filter.pyt update� s6 -0c C` s� | j } x9 t | j � D]( \ } } | j | | j � | j | <q Wt | j | j | � } | j | 7_ d } x1 | j D]&