� �g�Uc @` s� d Z d d l m Z m Z m Z m Z d d l Z d d l j Z d d l m Z m Z m Z m Z d d l m Z m Z m Z d e f d � � YZ d S( u4 Copyright 2015 Roger R Labbe Jr. FilterPy library. http://github.com/rlabbe/filterpy Documentation at: https://filterpy.readthedocs.org Supporting book at: https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python This is licensed under an MIT license. See the readme.MD file for more information. i ( t absolute_importt divisiont print_functiont unicode_literalsN( t dott zerost eyet asarray( t settert setter_scalart dot3t FadingKalmanFilterc B` s� e Z d d � Z d d � Z d d � Z d e d � Z d d � Z d � Z d � Z e d � � Z e j d � � Z e d � � Z e j d � � Z e d � � Z e j d � � Z e d � � Z e j d � � Z e d � � Z e j d � � Z e d � � Z e j d � � Z e d � � Z e j d � � Z e d � � Z e j d � � Z e d � � Z e d � � Z e d � � Z RS( i c C` s | d k s t � | d k s$ t � | d k s6 t � | d k sH t � | d | _ | | _ | | _ | | _ t | d f � | _ t | � | _ t | � | _ d | _ d | _ d | _ t | � | _ d | _ t | d f � | _ d | _ t j | � | _ d S( u Create a Kalman filter. You are responsible for setting the various state variables to reasonable values; the defaults below will not give you a functional filter. **Parameters** alpha : float, >= 1 alpha controls how much you want the filter to forget past measurements. alpha==1 yields identical performance to the Kalman filter. A typical application might use 1.01 dim_x : int Number of state variables for the Kalman filter. For example, if you are tracking the position and velocity of an object in two dimensions, dim_x would be 4. This is used to set the default size of P, Q, and u dim_z : int Number of of measurement inputs. For example, if the sensor provides you with position in (x,y), dim_z would be 2. dim_u : int (optional) size of the control input, if it is being used. Default value of 0 indicates it is not used. **Instance Variables** You will have to assign reasonable values to all of these before running the filter. All must have dtype of float X : ndarray (dim_x, 1), default = [0,0,0...0] state of the filter P : ndarray (dim_x, dim_x), default identity matrix covariance matrix Q : ndarray (dim_x, dim_x), default identity matrix Process uncertainty matrix R : ndarray (dim_z, dim_z), default identity matrix measurement uncertainty H : ndarray (dim_z, dim_x) measurement function F : ndarray (dim_x, dim_x) state transistion matrix B : ndarray (dim_x, dim_u), default 0 control transition matrix i i i N( t AssertionErrort alpha_sqt dim_xt dim_zt dim_uR t _XR t _Pt _Qt _Bt _Ft _Ht _Rt _Kt _yt _St npt _I( t selft alphaR R R ( ( s"