Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Testing latest pari + WASM + node.js... and it works?! Wow.

28479 views
License: GPL3
ubuntu2004
1
/* Copyright (C) 2016 The PARI group.
2
3
This file is part of the PARI/GP package.
4
5
PARI/GP is free software; you can redistribute it and/or modify it under the
6
terms of the GNU General Public License as published by the Free Software
7
Foundation; either version 2 of the License, or (at your option) any later
8
version. It is distributed in the hope that it will be useful, but WITHOUT
9
ANY WARRANTY WHATSOEVER.
10
11
Check the License for details. You should have received a copy of it, along
12
with the package; see the file 'COPYING'. If not, write to the Free Software
13
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
14
15
#include "pari.h"
16
#include "paripriv.h"
17
/*******************************************************************/
18
/* LOGARITHMIC CLASS GROUP */
19
/*******************************************************************/
20
/* min(v, v(Log_p Norm_{F_\p/Q_p}(x))) */
21
static long
22
vlognorm(GEN nf, GEN T, GEN x, GEN p, long v)
23
{
24
GEN a = nf_to_scalar_or_alg(nf, x);
25
GEN N = RgXQ_norm(a, T);
26
if (typ(N) != t_PADIC) N = cvtop(N, p, v);
27
return minss(v, valp( Qp_log(N) ));
28
}
29
/* K number field, pr a maximal ideal, let K_pr be the attached local
30
* field, K_pr = Q_p[X] / (T), T irreducible. Return \tilde{e}(K_pr/Q_p) */
31
static long
32
etilde(GEN nf, GEN pr, GEN T)
33
{
34
GEN gp = pr_get_p(pr);
35
ulong e = pr_get_e(pr);
36
long v, voo, vmin, p, k;
37
38
if (!u_pval(e, gp))
39
{
40
v = u_pval(pr_get_f(pr), gp);
41
return itou( mului(e, powiu(gp, v)) );
42
}
43
nf = checknf(nf);
44
p = itou(gp);
45
k = e / (p-1) + 1;
46
/* log Norm_{F_P/Q_p} (1 + P^k) = Tr(P^k) = p^[(k + v(Diff))/ e] Z_p */
47
voo = (k + idealval(nf, nf_get_diff(nf), pr)) / e;
48
vmin = vlognorm(nf, T, pr_get_gen(pr), gp, voo);
49
if (k > 1)
50
{
51
GEN U = idealprincipalunits(nf, pr, k);
52
GEN gen = abgrp_get_gen(U), cyc = abgrp_get_cyc(U);
53
long i, l = lg(cyc);
54
for (i = 1; i < l; i++)
55
{
56
if (voo - Z_lval(gel(cyc,i), p) >= vmin) break;
57
vmin = vlognorm(nf, T, gel(gen,i), gp, vmin);
58
}
59
}
60
v = u_lval(degpol(T), p) + (p == 2UL? 2 : 1) - vmin;
61
(void)u_lvalrem(e, p, &e);
62
return e * upowuu(p,v);
63
}
64
static long
65
ftilde_from_e(GEN pr, long e) { return pr_get_e(pr) * pr_get_f(pr) / e; }
66
static long
67
ftilde(GEN K, GEN pr, GEN T) { return ftilde_from_e(pr, etilde(K,pr, T)); }
68
69
static long
70
get_ZpX_index(GEN K, GEN pr, GEN T)
71
{
72
GEN p, pi;
73
long j, l = lg(T);
74
if (l == 2) return 1;
75
p = pr_get_p(pr); pi = nf_to_scalar_or_alg(K, pr_get_gen(pr));
76
for (j = 1; j < l; j++)
77
{
78
GEN t = gel(T,j);
79
if (t && gvaluation(RgXQ_norm(pi, t), p)) return j;
80
}
81
return 0;
82
}
83
84
/* Given a number field K and a prime p, return
85
* S = places of K above p [primedec]
86
* R = corresponding p-adic factors of K.pol (mod p^k), in the same order */
87
static GEN
88
padicfact(GEN K, GEN S, long k)
89
{
90
GEN R, p = pr_get_p(gel(S,1));
91
GEN T = gel(factorpadic(nf_get_pol(K), p, k), 1);
92
long l, i;
93
S = idealprimedec(K, p);
94
R = cgetg_copy(S, &l);
95
for (i = 1; i < l; i++)
96
{
97
long j = get_ZpX_index(K, gel(S,i), T);
98
gel(R,i) = gel(T,j);
99
gel(T,j) = NULL;
100
}
101
return R;
102
}
103
104
/* K a bnf, compute Cl'(K) = ell-Sylow of Cl(K) / (places above ell).
105
* Return [D, u, R0, U0, ordS]
106
* - D: cyclic factors for Cl'(K)
107
* - u: generators of cyclic factors (all coprime to ell)
108
* - R0: subgroup isprincipal(<S>) (divides K.cyc)
109
* - U0: generators of R0 are of the form S . U0
110
* - ordS[i] = order of S[i] in CL(K) */
111
static GEN
112
CL_prime(GEN K, GEN ell, GEN Sell)
113
{
114
GEN g, ordS, R0, U0, U, D, u, cyc = bnf_get_cyc(K);
115
long i, l, lD, lS = lg(Sell);
116
117
g = leafcopy(bnf_get_gen(K));
118
l = lg(g);
119
for (i = 1; i < l; i++)
120
{
121
GEN A = gel(g,i), a = gcoeff(A,1,1);
122
long v = Z_pvalrem(a, ell, &a);
123
if (v) gel(g,i) = hnfmodid(A, a); /* make coprime to ell */
124
}
125
R0 = cgetg(lS, t_MAT);
126
ordS = cgetg(lS, t_VEC);
127
for (i = 1; i < lS; i++)
128
{
129
gel(R0,i) = isprincipal(K, gel(Sell,i));
130
gel(ordS,i) = charorder(cyc, gel(R0,i)); /* order of Sell[i] */
131
}
132
R0 = shallowconcat(R0, diagonal_shallow(cyc));
133
/* R0 = subgroup generated by S in Cl(K) [ divides diagonal(K.cyc) ]*/
134
R0 = ZM_hnfall(R0, &U0, 2); /* [S | cyc] * U0 = R0 in HNF */
135
D = ZM_snfall(R0, &U,NULL);
136
D = RgM_diagonal_shallow(D);
137
lD = lg(D);
138
u = ZM_inv(U, NULL); settyp(u, t_VEC);
139
for (i = 1; i < lD; i++) gel(u,i) = idealfactorback(K,g,gel(u,i),1);
140
setlg(U0, l);
141
U0 = rowslice(U0,1,lS-1); /* restrict to 'S' part */
142
return mkvec5(D, u, R0, U0, ordS);
143
}
144
145
static GEN
146
ell1(GEN ell) { return equaliu(ell,2)? utoipos(5): addiu(ell,1); }
147
148
/* log N_{F_P/Q_p}(x) */
149
static GEN
150
vtilde_i(GEN K, GEN x, GEN T, GEN ell, long prec)
151
{
152
GEN N, cx;
153
if (typ(x) != t_POL) x = nf_to_scalar_or_alg(K, x);
154
if (typ(x) != t_POL) { cx = x; N = NULL; }
155
else
156
{
157
x = Q_primitive_part(x,&cx);
158
N = resultant(RgX_rem(x,T), T);
159
N = cvtop(N,ell,prec);
160
}
161
if (cx)
162
{
163
(void)Q_pvalrem(cx, ell, &cx);
164
if (!isint1(cx))
165
{
166
cx = gpowgs(cvtop(cx,ell,prec), degpol(T));
167
N = N? gmul(N, cx): cx;
168
}
169
}
170
return N? Qp_log(N): gen_0;
171
}
172
static GEN
173
vecvtilde_i(GEN K, GEN x, GEN T, GEN ell, long prec)
174
{ pari_APPLY_same(vtilde_i(K, gel(x,i), T, ell, prec)); }
175
static GEN
176
vtilde(GEN K, GEN x, GEN T, GEN deg, GEN ell, long prec)
177
{
178
pari_sp av;
179
GEN v, G, E;
180
if (typ(x) != t_MAT) return gdiv(vtilde_i(K,x,T,ell,prec), deg);
181
G = gel(x,1);
182
E = gel(x,2); av = avma; v = vecvtilde_i(K,G,T,ell,prec);
183
return gerepileupto(av, gdiv(RgV_dotproduct(E, v), deg));
184
}
185
186
/* v[i] = deg S[i] mod p^prec */
187
static GEN
188
get_vdegS(GEN Ftilde, GEN ell, long prec)
189
{
190
long i, l = lg(Ftilde);
191
GEN v = cgetg(l, t_VEC), degell = Qp_log( cvtop(ell1(ell), ell, prec) );
192
for (i = 1; i < l; i++) gel(v,i) = gmulsg(Ftilde[i], degell);
193
return v;
194
}
195
/* K a bnf. Compute kernel \tilde{Cl}_K(ell); return cyclic factors.
196
* Set *pM to (vtilde_S[i](US[j]))_{i,j} */
197
static GEN
198
CL_tilde(GEN K, GEN US, GEN ell, GEN T, long imin, GEN vdegS,
199
GEN *pM, long prec)
200
{
201
long i, j, k, lD, l = lg(T), lU = lg(US);
202
GEN D, M, ellk;
203
204
/* p = P^e: \tilde{Cl}(l) = (1) */
205
if (l == 2) { *pM = cgetg(1, t_MAT); return cgetg(1, t_VEC); }
206
M = cgetg(lU, t_MAT);
207
for (j = 1; j < lU; j++)
208
{
209
GEN c = cgetg(l, t_COL), a = gel(US,j);
210
for (i = 1; i < l; i++)
211
gel(c,i) = vtilde(K, a, gel(T,i), gel(vdegS,i), ell, prec);
212
gel(M,j) = c;
213
}
214
k = padicprec(M, ell); ellk = powiu(ell, k);
215
*pM = M = gmod(M, ellk);
216
M = ZM_hnfmodid(rowsplice(M, imin), ellk);
217
D = matsnf0(M, 4); lD = lg(D);
218
if (lD > 1 && Z_pval(gel(D,1), ell) >= k) return NULL;
219
return D;
220
}
221
222
/* [L:K] = ell^k; return 1 if L/K is locally cyclotomic at ell, 0 otherwise */
223
long
224
rnfislocalcyclo(GEN rnf)
225
{
226
pari_sp av = avma;
227
GEN K, L, S, SK, TK, SLs, SL2, TL, ell;
228
ulong ll;
229
long i, j, k, lk, lSK;
230
checkrnf(rnf);
231
lk = rnf_get_degree(rnf);
232
if (lk == 1) return 1;
233
k = uisprimepower(lk, &ll);
234
if (!k) pari_err_IMPL("rnfislocalcyclo for non-l-extensions");
235
ell = utoi(ll);
236
K = rnf_get_nf(rnf);
237
L = rnf_build_nfabs(rnf, nf_get_prec(K));
238
S = rnfidealprimedec(rnf, ell);
239
SK = gel(S,1);
240
SLs = gel(S,2);
241
SL2 = shallowconcat1(SLs);
242
TK = padicfact(K, SK, 100); lSK = lg(SK);
243
TL = padicfact(L, SL2, 100);
244
for (i = 1; i < lSK; i++)
245
{
246
long eK = etilde(K, gel(SK,i), gel(TK,i));
247
GEN SL = gel(SLs,i);
248
long lSL = lg(SL);
249
for (j = 1; j < lSL; j++)
250
{
251
long iS = gen_search(SL2, gel(SL,j), (void*)&cmp_prime_over_p,
252
&cmp_nodata);
253
long eL = etilde(L, gel(SL,j), gel(TL,iS));
254
if (dvdui(eL/eK, ell)) return gc_long(av,0);
255
}
256
};
257
return gc_long(av,1);
258
}
259
260
#if 0
261
/* Return 1 if L/Q is locally cyclotomic at ell */
262
static int
263
islocalcycloQ(GEN L, GEN ell)
264
{
265
GEN SL = idealprimedec(L,ell), TL;
266
long i, lSL = lg(SL);
267
TL = padicfact(L, SL, 100);
268
for (i = 1; i < lSL; i++)
269
{
270
long eL = etilde(L, gel(SL,i), gel(TL,i));
271
if (dvdui(eL,ell)) return 0;
272
}
273
return 1;
274
}
275
#endif
276
277
/* true nf, pr a prid */
278
static long
279
nfislocalpower_i(GEN nf, GEN pr, GEN a, GEN n)
280
{
281
long v, e, t;
282
GEN p, G, L;
283
a = nf_to_scalar_or_basis(nf,a);
284
if (!signe(n)) return isint1(a);
285
v = nfvalrem(nf, a, pr, &a); if (!dvdsi(v, n)) return 0;
286
p = pr_get_p(pr);
287
v = Z_pvalrem(n, p, &n);
288
if (!equali1(n))
289
{
290
GEN T, modpr = zk_to_Fq_init(nf, &pr, &T, &p);
291
GEN ap = nf_to_Fq(nf, a, modpr);
292
if (!Fq_ispower(ap, n, T, p)) return 0;
293
}
294
if (!v) return 1;
295
e = pr_get_e(pr);
296
if (v == 1) /* optimal formula */
297
t = itos( divii(mului(e,p), subiu(p,1)) ) + 1;
298
else /* straight Hensel */
299
t = 2 * e * v + 1;
300
G = Idealstarprk(nf, pr, t, nf_INIT);
301
L = ideallogmod(nf, a, G, powiu(p, v));
302
return ZV_equal0(L) || ZV_pval(L, p) >= v;
303
}
304
long
305
nfislocalpower(GEN nf, GEN pr, GEN a, GEN n)
306
{
307
pari_sp av = avma;
308
if (typ(n) != t_INT) pari_err_TYPE("nfislocalpower",n);
309
nf = checknf(nf); checkprid(pr);
310
return gc_long(av, nfislocalpower_i(nf, pr, a, n));
311
}
312
313
/* v_ell( exponent(D) ) */
314
static long
315
ellexpo(GEN D, GEN ell) { return lg(D) == 1? 0: Z_pval(gel(D,1), ell); }
316
317
static GEN
318
ellsylow(GEN cyc, GEN ell)
319
{
320
long i, l;
321
GEN d = cgetg_copy(cyc, &l);
322
for (i = 1; i < l; i++)
323
{
324
GEN c = gel(cyc,i), a;
325
if (!Z_pvalrem(c, ell, &a)) break;
326
gel(d,i) = diviiexact(c, a);
327
}
328
setlg(d, i); return d;
329
}
330
331
static long
332
vnorm_x(GEN nf, GEN x, GEN ell)
333
{
334
x = nf_to_scalar_or_alg(nf,x);
335
if (typ(x) != t_POL) return 0;
336
x = Q_primpart(x);
337
return Q_pval(nfnorm(nf,x), ell);
338
}
339
static long
340
vtilde_prec_x(GEN nf, GEN x, GEN ell)
341
{
342
long i, l, v;
343
GEN G;
344
if (typ(x) != t_MAT) return vnorm_x(nf,x,ell);
345
G = gel(x,1); l = lg(G); v = 0;
346
for (i = 1; i < l; i++) v = maxss(v, vnorm_x(nf,gel(G,i),ell));
347
return v;
348
}
349
/* upper bound for \delta(vec): estimate loss of accuracy when evaluating
350
* \tilde{v} on the vec[i] */
351
static long
352
vtilde_prec(GEN nf, GEN vec, GEN ell)
353
{
354
long v0 = 0, i, l = lg(vec);
355
for (i = 1; i < l; i++)
356
v0 = maxss(v0, vtilde_prec_x(nf, gel(vec,i), ell));
357
return 3 + v0 + z_pval(nf_get_degree(nf), ell);
358
}
359
static GEN
360
get_Ftilde(GEN nf, GEN S, GEN T, GEN ell, long *pimin)
361
{
362
long j, lS = lg(S), vmin = lS;
363
GEN Ftilde = cgetg(lS, t_VECSMALL);
364
*pimin = 1;
365
for (j = 1; j < lS; j++)
366
{
367
long f = ftilde(nf, gel(S,j), gel(T,j)), v = z_pval(f, ell);
368
Ftilde[j] = f; if (v < vmin) { vmin = v; *pimin = j; }
369
}
370
return Ftilde;
371
}
372
static GEN
373
bnflog_i(GEN bnf, GEN ell)
374
{
375
long prec0, prec;
376
GEN nf, US, vdegS, S, T, M, CLp, CLt, Ftilde, vtG, ellk;
377
GEN D, Ap, cycAp, fu;
378
long imin, i, j, lvAp;
379
380
bnf = checkbnf(bnf); nf = bnf_get_nf(bnf);
381
S = idealprimedec(nf, ell);
382
US = sunits_mod_units(bnf, S);
383
prec0 = maxss(30, vtilde_prec(nf, US, ell));
384
if (!(fu = bnf_build_cheapfu(bnf)) && !(fu = bnf_compactfu(bnf)))
385
bnf_build_units(bnf);
386
US = shallowconcat(fu, US);
387
settyp(US, t_COL);
388
T = padicfact(nf, S, prec0);
389
Ftilde = get_Ftilde(nf, S, T, ell, &imin);
390
CLp = CL_prime(bnf, ell, S);
391
cycAp = gel(CLp,1);
392
Ap = gel(CLp,2);
393
for(;;)
394
{
395
vdegS = get_vdegS(Ftilde, ell, prec0);
396
CLt = CL_tilde(nf, US, ell, T, imin, vdegS, &vtG, prec0);
397
if (CLt) break;
398
prec0 <<= 1;
399
T = padicfact(nf, S, prec0);
400
}
401
prec = ellexpo(cycAp, ell) + ellexpo(CLt,ell) + 1;
402
if (prec == 1) return mkvec3(cgetg(1,t_VEC), cgetg(1,t_VEC), cgetg(1,t_VEC));
403
404
ellk = powiu(ell, prec);
405
lvAp = lg(Ap);
406
if (lvAp > 1)
407
{
408
long lS = lg(S);
409
GEN Kcyc = bnf_get_cyc(bnf);
410
GEN C = zeromatcopy(lvAp-1, lS-1);
411
GEN Rell = gel(CLp,3), Uell = gel(CLp,4), ordS = gel(CLp,5);
412
for (i = 1; i < lvAp; i++)
413
{
414
GEN a, b, bi, A = gel(Ap,i), d = gel(cycAp,i);
415
bi = isprincipal(bnf, A);
416
a = vecmodii(ZC_Z_mul(bi,d), Kcyc);
417
/* a in subgroup generated by S = Rell; hence b integral */
418
b = hnf_invimage(Rell, a);
419
b = vecmodii(ZM_ZC_mul(Uell, ZC_neg(b)), ordS);
420
A = mkvec2(A, trivial_fact());
421
A = idealpowred(nf, A, d);
422
/* find a principal representative of A_i^cycA_i up to elements of S */
423
a = isprincipalfact(bnf,gel(A,1),S,b,nf_GENMAT|nf_FORCE);
424
if (!gequal0(gel(a,1))) pari_err_BUG("bnflog");
425
a = famat_mul_shallow(gel(A,2), gel(a,2)); /* principal part */
426
if (lg(a) == 1) continue;
427
for (j = 1; j < lS; j++)
428
gcoeff(C,i,j) = vtilde(nf, a, gel(T,j), gel(vdegS,j), ell, prec0);
429
}
430
C = gmod(gneg(C),ellk);
431
C = shallowtrans(C);
432
M = mkmat2(mkcol2(diagonal_shallow(cycAp), C), mkcol2(gen_0, vtG));
433
M = shallowmatconcat(M); /* relation matrix */
434
}
435
else
436
M = vtG;
437
M = ZM_hnfmodid(M, ellk);
438
D = matsnf0(M, 4);
439
if (lg(D) == 1 || !dvdii(gel(D,1), ellk))
440
pari_err_BUG("bnflog [missing Z_l component]");
441
D = vecslice(D,2,lg(D)-1);
442
return mkvec3(D, CLt, ellsylow(cycAp, ell));
443
}
444
GEN
445
bnflog(GEN bnf, GEN ell)
446
{
447
pari_sp av = avma;
448
return gerepilecopy(av, bnflog_i(bnf, ell));
449
}
450
451
GEN
452
bnflogef(GEN nf, GEN pr)
453
{
454
pari_sp av = avma;
455
long e, f, ef;
456
GEN p;
457
checkprid(pr); p = pr_get_p(pr);
458
nf = checknf(nf);
459
e = pr_get_e(pr);
460
f = pr_get_f(pr); ef = e*f;
461
if (u_pval(ef, p))
462
{
463
GEN T = gel(factorpadic(nf_get_pol(nf), p, 100), 1);
464
long j = get_ZpX_index(nf, pr, T);
465
e = etilde(nf, pr, gel(T,j));
466
f = ef / e;
467
}
468
set_avma(av); return mkvec2s(e,f);
469
}
470
471
GEN
472
bnflogdegree(GEN nf, GEN A, GEN ell)
473
{
474
pari_sp av = avma;
475
GEN AZ, A0Z, NA0;
476
long vAZ;
477
478
if (typ(ell) != t_INT) pari_err_TYPE("bnflogdegree", ell);
479
nf = checknf(nf);
480
A = idealhnf(nf, A);
481
AZ = gcoeff(A,1,1);
482
vAZ = Z_pvalrem(AZ, ell, &A0Z);
483
if (is_pm1(A0Z))
484
NA0 = gen_1;
485
else
486
(void)Z_pvalrem(idealnorm(nf,A), ell, &NA0);
487
if (vAZ)
488
{
489
GEN Aell = ZM_hnfmodid(A, powiu(ell,vAZ));
490
GEN S = idealprimedec(nf, ell), T;
491
long l, i, s = 0;
492
T = padicfact(nf, S, 100);
493
l = lg(S);
494
for (i = 1; i < l; i++)
495
{
496
GEN P = gel(S,i);
497
long v = idealval(nf, Aell, P);
498
if (v) s += v * ftilde(nf, P, gel(T,i));
499
}
500
if (s) NA0 = gmul(NA0, gpowgs(ell1(ell), s));
501
}
502
return gerepileupto(av, NA0);
503
}
504
505