Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: algisassociative Section: algebras C-Name: algisassociative Prototype: iGD0,G, Help: algisassociative(mt,p=0): true (1) if the multiplication table mt is suitable for algtableinit(mt,p), false (0) otherwise. Doc: Returns 1 if the multiplication table \kbd{mt} is suitable for \kbd{algtableinit(mt,p)}, 0 otherwise. More precisely, \kbd{mt} should be a \typ{VEC} of $n$ matrices in $M_n(K)$, giving the left multiplications by the basis elements $e_1, \dots, e_n$ (structure constants). We check whether the first basis element $e_1$ is $1$ and $e_i(e_je_k) = (e_ie_j)e_k$ for all $i,j,k$. \bprog ? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]]; ? algisassociative(mt) %2 = 1 @eprog May be used to check a posteriori an algebra: we also allow \kbd{mt} as output by \tet{algtableinit} ($p$ is ignored in this case).