Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: precision Section: conversions C-Name: precision00 Prototype: GDG Help: precision(x,{n}): if n is present, return x at precision n. If n is omitted, return real precision of object x. Doc: the function behaves differently according to whether $n$ is present or not. If $n$ is missing, the function returns the floating point precision in decimal digits of the PARI object $x$. If $x$ has no floating point component, the function returns \kbd{+oo}. \bprog ? precision(exp(1e-100)) %1 = 154 \\ 154 significant decimal digits ? precision(2 + x) %2 = +oo \\ exact object ? precision(0.5 + O(x)) %3 = 38 \\ floating point accuracy, NOT series precision ? precision( [ exp(1e-100), 0.5 ] ) %4 = 38 \\ minimal accuracy among components @eprog\noindent Using \kbd{getlocalprec()} allows to retrieve the working precision (as modified by possible \kbd{localprec} statements). If $n$ is present, the function creates a new object equal to $x$ with a new floating point precision $n$: $n$ is the number of desired significant \emph{decimal} digits. If $n$ is smaller than the precision of a \typ{REAL} component of $x$, it is truncated, otherwise it is extended with zeros. For non-floating-point types, no change. Variant: Also available are \fun{GEN}{gprec}{GEN x, long n} and \fun{long}{precision}{GEN x}. In both, the accuracy is expressed in \emph{words} (32-bit or 64-bit depending on the architecture).