Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Testing latest pari + WASM + node.js... and it works?! Wow.

28494 views
License: GPL3
ubuntu2004
Function: precision
Section: conversions
C-Name: precision00
Prototype: GDG
Help: precision(x,{n}): if n is present, return x at precision n. If n is
 omitted, return real precision of object x.
Doc: the function behaves differently according to whether $n$ is
 present or not. If $n$ is missing, the function returns
 the floating point precision in decimal digits of the PARI object $x$. If $x$
 has no floating point component, the function returns \kbd{+oo}.
 \bprog
 ? precision(exp(1e-100))
 %1 = 154                \\ 154 significant decimal digits
 ? precision(2 + x)
 %2 = +oo                \\ exact object
 ? precision(0.5 + O(x))
 %3 = 38                 \\ floating point accuracy, NOT series precision
 ? precision( [ exp(1e-100), 0.5 ] )
 %4 = 38                 \\ minimal accuracy among components
 @eprog\noindent Using \kbd{getlocalprec()} allows to retrieve
 the working precision (as modified by possible \kbd{localprec}
 statements).

 If $n$ is present, the function creates a new object equal to $x$ with a new
 floating point precision $n$: $n$ is the number of desired significant
 \emph{decimal} digits. If $n$ is smaller than the precision of a \typ{REAL}
 component of $x$, it is truncated, otherwise it is extended with zeros.
 For non-floating-point types, no change.

Variant: Also available are \fun{GEN}{gprec}{GEN x, long n} and
 \fun{long}{precision}{GEN x}. In both, the accuracy is expressed in
 \emph{words} (32-bit or 64-bit depending on the architecture).