Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: ellL1 Section: elliptic_curves C-Name: ellL1_bitprec Prototype: GD0,L,b Help: ellL1(E, {r = 0}): returns the value at s=1 of the derivative of order r of the L-function of the elliptic curve E. Doc: returns the value at $s=1$ of the derivative of order $r$ of the $L$-function of the elliptic curve $E$. \bprog ? E = ellinit("11a1"); \\ order of vanishing is 0 ? ellL1(E) %2 = 0.2538418608559106843377589233 ? E = ellinit("389a1"); \\ order of vanishing is 2 ? ellL1(E) %4 = -5.384067311837218089235032414 E-29 ? ellL1(E, 1) %5 = 0 ? ellL1(E, 2) %6 = 1.518633000576853540460385214 @eprog\noindent The main use of this function, after computing at \emph{low} accuracy the order of vanishing using \tet{ellanalyticrank}, is to compute the leading term at \emph{high} accuracy to check (or use) the Birch and Swinnerton-Dyer conjecture: \bprog ? \p18 realprecision = 18 significant digits ? E = ellinit("5077a1"); ellanalyticrank(E) time = 8 ms. %1 = [3, 10.3910994007158041] ? \p200 realprecision = 202 significant digits (200 digits displayed) ? ellL1(E, 3) time = 104 ms. %3 = 10.3910994007158041387518505103609170697263563756570092797@com$[\dots]$ @eprog