Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: ellanalyticrank Section: elliptic_curves C-Name: ellanalyticrank_bitprec Prototype: GDGb Help: ellanalyticrank(E, {eps}): returns the order of vanishing at s=1 of the L-function of the elliptic curve E and the value of the first nonzero derivative. To determine this order, it is assumed that any value less than eps is zero. If no value of eps is given, 2^(-bitprecision/2) is used. Doc: returns the order of vanishing at $s=1$ of the $L$-function of the elliptic curve $E$ and the value of the first nonzero derivative. To determine this order, it is assumed that any value less than \kbd{eps} is zero. If \kbd{eps} is omitted, $2^{-b/2}$ is used, where $b$ is the current bit precision. \bprog ? E = ellinit("11a1"); \\ rank 0 ? ellanalyticrank(E) %2 = [0, 0.2538418608559106843377589233] ? E = ellinit("37a1"); \\ rank 1 ? ellanalyticrank(E) %4 = [1, 0.3059997738340523018204836835] ? E = ellinit("389a1"); \\ rank 2 ? ellanalyticrank(E) %6 = [2, 1.518633000576853540460385214] ? E = ellinit("5077a1"); \\ rank 3 ? ellanalyticrank(E) %8 = [3, 10.39109940071580413875185035] @eprog