Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Testing latest pari + WASM + node.js... and it works?! Wow.

28495 views
License: GPL3
ubuntu2004
Function: ellap
Section: elliptic_curves
C-Name: ellap
Prototype: GDG
Help: ellap(E,{p}): given an elliptic curve E defined over
 a finite field Fq, return the trace of Frobenius a_p = q+1-#E(Fq); for other
 fields of definition K, p must define a finite residue field,
 (p prime for K = Qp or Q; p a maximal ideal for K a number field),
 return the order of the (nonsingular) reduction of E.
Doc:
 Let \kbd{E} be an \kbd{ell} structure as output by \kbd{ellinit}, attached
 to an elliptic curve $E/K$. If the field $K = \F_q$ is finite, return the
 trace of Frobenius $t$, defined by the equation $\#E(\F_q) = q+1 - t$.

 For other fields of definition and $p$ defining a finite residue field
 $\F_q$, return the trace of Frobenius for the reduction of $E$: the argument
 $p$ is best left omitted if $K = \Q_\ell$ (else we must have $p = \ell$) and
 must be a prime number ($K = \Q$) or prime ideal ($K$ a general number field)
 with residue field $\F_q$ otherwise. The equation need not be minimal
 or even integral at $p$; of course, a minimal model will be more efficient.

 For a number field $K$, the trace of Frobenius is the $a_p$
 coefficient in the Euler product defining the curve $L$-series, whence
 the function name:
 $$L(E/K,s) = \prod_{\text{bad}\ p} (1-a_p (Np)^{-s})^{-1}
              \prod_{\text{good}\ p} (1-a_p (Np)^{-s} + (Np)^{1-2s})^{-1}. $$

 When the characteristic of the finite field is large, the availability of
 the \kbd{seadata} package will speed up the computation.

 \bprog
 ? E = ellinit([0,1]);  \\ y^2 = x^3 + 0.x + 1, defined over Q
 ? ellap(E, 7) \\ 7 necessary here
 %2 = -4       \\ #E(F_7) = 7+1-(-4) = 12
 ? ellcard(E, 7)
 %3 = 12       \\ OK

 ? E = ellinit([0,1], 11);  \\ defined over F_11
 ? ellap(E)       \\ no need to repeat 11
 %4 = 0
 ? ellap(E, 11)   \\ ... but it also works
 %5 = 0
 ? ellgroup(E, 13) \\ ouch, inconsistent input!
    ***   at top-level: ellap(E,13)
    ***                 ^-----------
    *** ellap: inconsistent moduli in Rg_to_Fp:
      11
      13
 ? a = ffgen(ffinit(11,3), 'a); \\ defines F_q := F_{11^3}
 ? E = ellinit([a+1,a]);  \\ y^2 = x^3 + (a+1)x + a, defined over F_q
 ? ellap(E)
 %8 = -3
 @eprog

 If the curve is defined over a more general number field than $\Q$,
 the maximal ideal $p$ must be explicitly given in \kbd{idealprimedec}
 format. There is no assumption of local minimality at $p$.
 \bprog
 ? K = nfinit(a^2+1); E = ellinit([1+a,0,1,0,0], K);
 ? fa = idealfactor(K, E.disc)
 %2 =
 [  [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]] 1]

 [[13, [5, 1]~, 1, 1, [-5, -1; 1, -5]] 2]
 ? ellap(E, fa[1,1])
 %3 = -1 \\ nonsplit multiplicative reduction
 ? ellap(E, fa[2,1])
 %4 = 1  \\ split multiplicative reduction
 ? P17 = idealprimedec(K,17)[1];
 ? ellap(E, P17)
 %6 = 6  \\ good reduction
 ? E2 = ellchangecurve(E, [17,0,0,0]);
 ? ellap(E2, P17)
 %8 = 6  \\ same, starting from a nonmiminal model

 ? P3 = idealprimedec(K,3)[1];
 ? ellap(E, P3)  \\ OK: E is minimal at P3
 %10 = -2
 ? E3 = ellchangecurve(E, [3,0,0,0]);
 ? ellap(E3, P3) \\ not integral at P3
  ***   at top-level: ellap(E3,P3)
  ***                 ^------------
  *** ellap: impossible inverse in Rg_to_ff: Mod(0, 3).
 @eprog

 \misctitle{Algorithms used} If $E/\F_q$ has CM by a principal imaginary
 quadratic order we use a fast explicit formula (involving essentially
 Kronecker symbols and Cornacchia's algorithm), in $O(\log q)^2$ bit
 operations.
 Otherwise, we use Shanks-Mestre's baby-step/giant-step method, which runs in
 time $\tilde{O}(q^{1/4})$ using $\tilde{O}(q^{1/4})$ storage, hence becomes
 unreasonable when $q$ has about 30~digits. Above this range, the \tet{SEA}
 algorithm becomes available, heuristically in $\tilde{O}(\log q)^4$, and
 primes of the order of 200~digits become feasible.  In small
 characteristic we use Mestre's (p=2), Kohel's (p=3,5,7,13), Satoh-Harley
 (all in $\tilde{O}(p^{2}\*n^2)$) or Kedlaya's (in $\tilde{O}(p\*n^3)$)
 algorithms.