Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: ellformalpoint Section: elliptic_curves C-Name: ellformalpoint Prototype: GDPDn Help: ellformalpoint(E, {n = seriesprecision}, {v = 'x}): E elliptic curve, n integer; return the coordinates [x(t), y(t)] on the elliptic curve as a formal expansion in the formal parameter t = -x/y. Doc: If $E$ is an elliptic curve, return the coordinates $x(t), y(t)$ in the formal group of the elliptic curve $E$ in the formal parameter $t = -x/y$ at $\infty$: $$ x = t^{-2} -a_1 t^{-1} - a_2 - a_3 t + \dots $$ $$ y = - t^{-3} -a_1 t^{-2} - a_2t^{-1} -a_3 + \dots $$ Return $n$ terms (\tet{seriesprecision} by default) of these two power series, whose coefficients are in $\Z[a_1,a_2,a_3,a_4,a_6]$. \bprog ? E = ellinit([0,0,1,-1,0]); [x,y] = ellformalpoint(E,8,'t); ? x %2 = t^-2 - t + t^2 - t^4 + 2*t^5 + O(t^6) ? y %3 = -t^-3 + 1 - t + t^3 - 2*t^4 + O(t^5) ? E = ellinit([0,1/2]); ellformalpoint(E,7) %4 = [x^-2 - 1/2*x^4 + O(x^5), -x^-3 + 1/2*x^3 + O(x^4)] @eprog