Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Testing latest pari + WASM + node.js... and it works?! Wow.

28495 views
License: GPL3
ubuntu2004
Function: ellissupersingular
Section: elliptic_curves
C-Name: ellissupersingular
Prototype: iGDG
Help: ellissupersingular(E,{p}): return 1 if the elliptic curve E, defined
 over a number field or a finite field, is supersingular at p, and 0 otherwise.
Doc:
 Return 1 if the elliptic curve $E$ defined over a number field, $\Q_p$
 or a finite field is supersingular at $p$, and $0$ otherwise.
 If the curve is defined over a number field, $p$ must be explicitly given,
 and must be a prime number, resp.~a maximal ideal, if the curve is defined
 over $\Q$, resp.~a general number field: we return $1$ if and only if $E$
 has supersingular good reduction at $p$.

 Alternatively, $E$ can be given by its $j$-invariant in a finite field. In
 this case $p$ must be omitted.
 \bprog
 ? setrand(1); \\ make the choice of g deterministic
 ? g = ffprimroot(ffgen(7^5))
 %1 = 4*x^4 + 5*x^3 + 6*x^2 + 5*x + 6
 ? [g^n | n <- [1 .. 7^5 - 1], ellissupersingular(g^n)]
 %2 = [6]

 ? K = nfinit(y^3-2); P = idealprimedec(K, 2)[1];
 ? E = ellinit([y,1], K);
 ? ellissupersingular(E, P)
 %5 = 1
 ? Q = idealprimedec(K,5)[1];
 ? ellissupersingular(E, Q)
 %6 = 0
 @eprog
Variant: Also available is
 \fun{int}{elljissupersingular}{GEN j} where $j$ is a $j$-invariant of a curve
 over a finite field.