Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: ellissupersingular Section: elliptic_curves C-Name: ellissupersingular Prototype: iGDG Help: ellissupersingular(E,{p}): return 1 if the elliptic curve E, defined over a number field or a finite field, is supersingular at p, and 0 otherwise. Doc: Return 1 if the elliptic curve $E$ defined over a number field, $\Q_p$ or a finite field is supersingular at $p$, and $0$ otherwise. If the curve is defined over a number field, $p$ must be explicitly given, and must be a prime number, resp.~a maximal ideal, if the curve is defined over $\Q$, resp.~a general number field: we return $1$ if and only if $E$ has supersingular good reduction at $p$. Alternatively, $E$ can be given by its $j$-invariant in a finite field. In this case $p$ must be omitted. \bprog ? setrand(1); \\ make the choice of g deterministic ? g = ffprimroot(ffgen(7^5)) %1 = 4*x^4 + 5*x^3 + 6*x^2 + 5*x + 6 ? [g^n | n <- [1 .. 7^5 - 1], ellissupersingular(g^n)] %2 = [6] ? K = nfinit(y^3-2); P = idealprimedec(K, 2)[1]; ? E = ellinit([y,1], K); ? ellissupersingular(E, P) %5 = 1 ? Q = idealprimedec(K,5)[1]; ? ellissupersingular(E, Q) %6 = 0 @eprog Variant: Also available is \fun{int}{elljissupersingular}{GEN j} where $j$ is a $j$-invariant of a curve over a finite field.