Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: elllog Section: elliptic_curves C-Name: elllog Prototype: GGGDG Help: elllog(E,P,G,{o}): return the discrete logarithm of the point P of the elliptic curve E in base G. If present, o represents the order of G. If not present, assume that G generates the curve. Doc: given two points $P$ and $G$ on the elliptic curve $E/\F_q$, returns the discrete logarithm of $P$ in base $G$, i.e. the smallest nonnegative integer $n$ such that $P = [n]G$. See \tet{znlog} for the limitations of the underlying discrete log algorithms. If present, $o$ represents the order of $G$, see \secref{se:DLfun}; the preferred format for this parameter is \kbd{[N, factor(N)]}, where $N$ is the order of $G$. If no $o$ is given, assume that $G$ generates the curve. The function also assumes that $P$ is a multiple of $G$. \bprog ? a = ffgen(ffinit(2,8),'a); ? E = ellinit([a,1,0,0,1]); \\ over F_{2^8} ? x = a^3; y = ellordinate(E,x)[1]; ? P = [x,y]; G = ellmul(E, P, 113); ? ord = [242, factor(242)]; \\ P generates a group of order 242. Initialize. ? ellorder(E, G, ord) %4 = 242 ? e = elllog(E, P, G, ord) %5 = 15 ? ellmul(E,G,e) == P %6 = 1 @eprog