Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: ellminimaltwist Section: elliptic_curves C-Name: ellminimaltwist0 Prototype: GD0,L, Help: ellminimaltwist(E, {flag=0}): E being an elliptic curve defined over Q, return a discriminant D such that the twist of E by D is minimal among all possible quadratic twists, i.e., if flag=0, its minimal model has minimal discriminant, or if flag=1, it has minimal conductor. Doc: Let $E$ be an elliptic curve defined over $\Q$, return a discriminant $D$ such that the twist of $E$ by $D$ is minimal among all possible quadratic twists, i.e. if $\fl=0$, its minimal model has minimal discriminant, or if $\fl=1$, it has minimal conductor. In the example below, we find a curve with $j$-invariant $3$ and minimal conductor. \bprog ? E = ellminimalmodel(ellinit(ellfromj(3))); ? ellglobalred(E)[1] %2 = 357075 ? D = ellminimaltwist(E,1) %3 = -15 ? E2 = ellminimalmodel(elltwist(E,D)); ? ellglobalred(E2)[1] %5 = 14283 @eprog In the example below, $\fl=0$ and $\fl=1$ give different results. \bprog ? E = ellinit([1,0]); ? D0 = ellminimaltwist(E,0) %7 = 1 ? D1 = ellminimaltwist(E,1) %8 = 8 ? E0 = ellminimalmodel(elltwist(E,D0)); ? [E0.disc, ellglobalred(E0)[1]] %10 = [-64, 64] ? E1 = ellminimalmodel(elltwist(E,D1)); ? [E1.disc, ellglobalred(E1)[1]] %12 = [-4096, 32] @eprog Variant: Also available are \fun{GEN}{ellminimaltwist}{E} for $\fl=0$, and \fun{GEN}{ellminimaltwistcond}{E} for $\fl=1$.