Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: lfunmfspec Section: l_functions C-Name: lfunmfspec Prototype: Gb Help: lfunmfspec(L): L corresponding to a modular eigenform, returns [ve,vo,om,op] in even weight, where ve (resp., vo) is the vector of even (resp., odd) periods, and om and op the corresponding real numbers omega^- and omega^+. Returns [v,om] in odd weight. Doc: let $L$ be the $L$-function attached to a modular eigenform $f$ of weight $k$, as given by \kbd{lfunmf}. In even weight, returns \kbd{[ve,vo,om,op]}, where \kbd{ve} (resp., \kbd{vo}) is the vector of even (resp., odd) periods of $f$ and \kbd{om} and \kbd{op} the corresponding real numbers $\omega^-$ and $\omega^+$ normalized in a noncanonical way. In odd weight \kbd{ominus} is the same as \kbd{op} and we return \kbd{[v,op]} where $v$ is the vector of all periods. \bprog ? D = mfDelta(); mf = mfinit(D); L = lfunmf(mf, D); ? [ve, vo, om, op] = lfunmfspec(L) %2 = [[1, 25/48, 5/12, 25/48, 1], [1620/691, 1, 9/14, 9/14, 1, 1620/691],\ 0.0074154209298961305890064277459002287248,\ 0.0050835121083932868604942901374387473226] ? DS = mfsymbol(mf, D); bestappr(om*op / mfpetersson(DS), 10^8) %3 = 8192/225 ? mf = mfinit([4, 9, -4], 0); ? F = mfeigenbasis(mf)[1]; L = lfunmf(mf, F); ? [v, om] = lfunmfspec(L) %6 = [[1, 10/21, 5/18, 5/24, 5/24, 5/18, 10/21, 1],\ 1.1302643192034974852387822584241400608] ? FS = mfsymbol(mf, F); bestappr(om^2 / mfpetersson(FS), 10^8) %7 = 113246208/325 @eprog