Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Testing latest pari + WASM + node.js... and it works?! Wow.

28494 views
License: GPL3
ubuntu2004
Function: charpoly
Section: linear_algebra
C-Name: charpoly0
Prototype: GDnD5,L,
Help: charpoly(A,{v='x},{flag=5}): det(v*Id-A)=characteristic polynomial of
 the matrix or polmod A. flag is optional and ignored unless A is a matrix;
 it may be set to 0 (Le Verrier), 1 (Lagrange interpolation),
 2 (Hessenberg form), 3 (Berkowitz), 4 (modular) if A is integral,
 or 5 (default, choose best method).
 Algorithms 0 (Le Verrier) and 1 (Lagrange) assume that n! is invertible,
 where n is the dimension of the matrix.
Doc:
 \idx{characteristic polynomial}
 of $A$ with respect to the variable $v$, i.e.~determinant of $v*I-A$ if $A$
 is a square matrix.
 \bprog
 ? charpoly([1,2;3,4]);
 %1 = x^2 - 5*x - 2
 ? charpoly([1,2;3,4],, 't)
 %2 = t^2 - 5*t - 2
 @eprog\noindent
 If $A$ is not a square matrix, the function returns the characteristic
 polynomial of the map ``multiplication by $A$'' if $A$ is a scalar:
 \bprog
 ? charpoly(Mod(x+2, x^3-2))
 %1 = x^3 - 6*x^2 + 12*x - 10
 ? charpoly(I)
 %2 = x^2 + 1
 ? charpoly(quadgen(5))
 %3 = x^2 - x - 1
 ? charpoly(ffgen(ffinit(2,4)))
 %4 = Mod(1, 2)*x^4 + Mod(1, 2)*x^3 + Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2)
 @eprog

 The value of $\fl$ is only significant for matrices, and we advise to stick
 to the default value. Let $n$ be the dimension of $A$.

 If $\fl=0$, same method (Le Verrier's) as for computing the adjoint matrix,
 i.e.~using the traces of the powers of $A$. Assumes that $n!$ is
 invertible; uses $O(n^4)$ scalar operations.

 If $\fl=1$, uses Lagrange interpolation which is usually the slowest method.
 Assumes that $n!$ is invertible; uses $O(n^4)$ scalar operations.

 If $\fl=2$, uses the Hessenberg form. Assumes that the base ring is a field.
 Uses $O(n^3)$ scalar operations, but suffers from coefficient explosion
 unless the base field is finite or $\R$.

 If $\fl=3$, uses Berkowitz's division free algorithm, valid over any
 ring (commutative, with unit). Uses $O(n^4)$ scalar operations.

 If $\fl=4$, $x$ must be integral. Uses a modular algorithm: Hessenberg form
 for various small primes, then Chinese remainders.

 If $\fl=5$ (default), uses the ``best'' method given $x$.
 This means we use Berkowitz unless the base ring is $\Z$ (use $\fl=4$)
 or a field where coefficient explosion does not occur,
 e.g.~a finite field or the reals (use $\fl=2$).

Variant: Also available are
 \fun{GEN}{charpoly}{GEN x, long v} ($\fl=5$),
 \fun{GEN}{caract}{GEN A, long v} ($\fl=1$),
 \fun{GEN}{carhess}{GEN A, long v} ($\fl=2$),
 \fun{GEN}{carberkowitz}{GEN A, long v} ($\fl=3$) and
 \fun{GEN}{caradj}{GEN A, long v, GEN *pt}. In this
 last case, if \var{pt} is not \kbd{NULL}, \kbd{*pt} receives the address of
 the adjoint matrix of $A$ (see \tet{matadjoint}), so both can be obtained at
 once.

Function: _QM_charpoly_ZX_worker
C-Name: QM_charpoly_ZX_worker
Prototype: GGG
Section: programming/internals
Help: worker for QM_charpoly_ZX