Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Testing latest pari + WASM + node.js... and it works?! Wow.

28494 views
License: GPL3
ubuntu2004
Function: concat
Section: linear_algebra
C-Name: gconcat
Prototype: GDG
Help: concat(x,{y}): concatenation of x and y, which can be scalars, vectors
 or matrices, or lists (in this last case, both x and y have to be lists). If
 y is omitted, x has to be a list or row vector and its elements are
 concatenated.
Description:
 (vecvecsmall,vecvecsmall):vecvecsmall gconcat($1, $2)
 (vecvecsmall):vecsmall                gconcat1($1)
 (mp,mp):vec           gconcat($1, $2)
 (vec,mp):vec          gconcat($1, $2)
 (mp,vec):vec          gconcat($1, $2)
 (vec,vec):vec         gconcat($1, $2)
 (list,list):list      gconcat($1, $2)
 (genstr,gen):genstr   gconcat($1, $2)
 (gen,genstr):genstr   gconcat($1, $2)
 (gen):gen             gconcat1($1)
 (gen,):gen            gconcat1($1)
 (gen,gen):gen         gconcat($1, $2)
Doc: concatenation of $x$ and $y$. If $x$ or $y$ is
 not a vector or matrix, it is considered as a one-dimensional vector. All
 types are allowed for $x$ and $y$, but the sizes must be compatible. Note
 that matrices are concatenated horizontally, i.e.~the number of rows stays
 the same. Using transpositions, one can concatenate them vertically,
 but it is often simpler to use \tet{matconcat}.
 \bprog
 ? x = matid(2); y = 2*matid(2);
 ? concat(x,y)
 %2 =
 [1 0 2 0]

 [0 1 0 2]
 ? concat(x~,y~)~
 %3 =
 [1 0]

 [0 1]

 [2 0]

 [0 2]
 ? matconcat([x;y])
 %4 =
 [1 0]

 [0 1]

 [2 0]

 [0 2]
 @eprog\noindent
 To concatenate vectors sideways (i.e.~to obtain a two-row or two-column
 matrix), use \tet{Mat} instead, or \tet{matconcat}:
 \bprog
 ? x = [1,2];
 ? y = [3,4];
 ? concat(x,y)
 %3 = [1, 2, 3, 4]

 ? Mat([x,y]~)
 %4 =
 [1 2]

 [3 4]
 ? matconcat([x;y])
 %5 =
 [1 2]

 [3 4]
 @eprog
 Concatenating a row vector to a matrix having the same number of columns will
 add the row to the matrix (top row if the vector is $x$, i.e.~comes first, and
 bottom row otherwise).

 The empty matrix \kbd{[;]} is considered to have a number of rows compatible
 with any operation, in particular concatenation. (Note that this is
 \emph{not} the case for empty vectors \kbd{[~]} or \kbd{[~]\til}.)

 If $y$ is omitted, $x$ has to be a row vector or a list, in which case its
 elements are concatenated, from left to right, using the above rules.
 \bprog
 ? concat([1,2], [3,4])
 %1 = [1, 2, 3, 4]
 ? a = [[1,2]~, [3,4]~]; concat(a)
 %2 =
 [1 3]

 [2 4]

 ? concat([1,2; 3,4], [5,6]~)
 %3 =
 [1 2 5]

 [3 4 6]
 ? concat([%, [7,8]~, [1,2,3,4]])
 %5 =
 [1 2 5 7]

 [3 4 6 8]

 [1 2 3 4]
 @eprog
Variant: \fun{GEN}{gconcat1}{GEN x} is a shortcut for \kbd{gconcat(x,NULL)}.