Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: mfbasis Section: modular_forms C-Name: mfbasis Prototype: GD4,L, Help: mfbasis(NK,{space=4}): If NK=[N,k,CHI] as in mfinit, gives a basis of the corresponding subspace of M_k(G_0(N),CHI). NK can also be the output of mfinit, in which case space is ignored. To obtain the eigenforms use mfeigenbasis. Doc: If $NK=[N,k,\var{CHI}]$ as in \kbd{mfinit}, gives a basis of the corresponding subspace of $M_k(\Gamma_0(N),\chi)$. $NK$ can also be the output of \kbd{mfinit}, in which case \kbd{space} can be omitted. To obtain the eigenforms, use \kbd{mfeigenbasis}. If \kbd{space} is a full space $M_k$, the output is the union of first, a basis of the space of Eisenstein series, and second, a basis of the cuspidal space. \bprog ? see(L) = apply(f->mfcoefs(f,3), L); ? mf = mfinit([35,2],0); ? see( mfbasis(mf) ) %2 = [[0, 3, -1, 0], [0, -1, 9, -8], [0, 0, -8, 10]] ? see( mfeigenbasis(mf) ) %3 = [[0, 1, 0, 1], [Mod(0, z^2 - z - 4), Mod(1, z^2 - z - 4), \ Mod(-z, z^2 - z - 4), Mod(z - 1, z^2 - z - 4)]] ? mf = mfinit([35,2]); ? see( mfbasis(mf) ) %5 = [[1/6, 1, 3, 4], [1/4, 1, 3, 4], [17/12, 1, 3, 4], \ [0, 3, -1, 0], [0, -1, 9, -8], [0, 0, -8, 10]] ? see( mfbasis([48,4],0) ) %6 = [[0, 3, 0, -3], [0, -3, 0, 27], [0, 2, 0, 30]] @eprog