Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: mfcuspval Section: modular_forms C-Name: mfcuspval Prototype: GGGb Help: mfcuspval(mf,F,cusp): valuation of modular form F in the space mf at cusp, which can be either oo or any rational number. The result is either a rational number or oo if F is zero. Let chi be the Nebentypus of the space mf; if Q(F) != Q(chi), return the vector of valuations attached to the [Q(F):Q(chi)] complex embeddings of F. Doc: valuation of modular form $F$ in the space \kbd{mf} at \kbd{cusp}, which can be either $\infty$ or any rational number. The result is either a rational number or $\infty$ if $F$ is zero. Let $\chi$ be the Nebentypus of the space \kbd{mf}; if $\Q(F) \neq \Q(\chi)$, return the vector of valuations attached to the $[\Q(F):\Q(chi)]$ complex embeddings of $F$. \bprog ? T=mfTheta(); mf=mfinit([12,1/2]); mfcusps(12) %1 = [0, 1/2, 1/3, 1/4, 1/6, 1/12] ? apply(x->mfcuspval(mf,T,x), %1) %2 = [0, 1/4, 0, 0, 1/4, 0] ? mf=mfinit([12,6,12],1); F=mfbasis(mf)[5]; ? apply(x->mfcuspval(mf,F,x),%1) %4 = [1/12, 1/6, 1/2, 2/3, 1/2, 2] ? mf=mfinit([12,3,-4],1); F=mfbasis(mf)[1]; ? apply(x->mfcuspval(mf,F,x),%1) %6 = [1/12, 1/6, 1/4, 2/3, 1/2, 1] ? mf = mfinit([625,2],0); [F] = mfeigenbasis(mf); mfparams(F) %7 = [625, 2, 1, y^2 - y - 1, t - 1] \\ [Q(F):Q(chi)] = 2 ? mfcuspval(mf, F, 1/25) %8 = [1, 2] \\ one conjugate has valuation 1, and the other is 2 ? mfcuspval(mf, F, 1/5) %9 = [1/25, 1/25] @eprog