Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: mffrometaquo Section: modular_forms C-Name: mffrometaquo Prototype: GD0,L, Help: mffrometaquo(eta,{flag=0}): modular form corresponding to the eta quotient matrix eta. If the valuation v at infinity is fractional, return 0. If the eta quotient is not holomorphic but simply meromorphic, return 0 if flag=0; return the eta quotient (divided by q to the power -v if v < 0, i.e., with valuation 0) if flag is set. Doc: modular form corresponding to the eta quotient matrix \kbd{eta}. If the valuation $v$ at infinity is fractional, return $0$. If the eta quotient is not holomorphic but simply meromorphic, return $0$ if \kbd{flag=0}; return the eta quotient (divided by $q$ to the power $-v$ if $v < 0$, i.e., with valuation $0$) if flag is set. \bprog ? mffrometaquo(Mat([1,1]),1) %1 = 0 ? mfcoefs(mffrometaquo(Mat([1,24])),6) %2 = [0, 1, -24, 252, -1472, 4830, -6048] ? mfcoefs(mffrometaquo([1,1;23,1]),10) %3 = [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0] ? F = mffrometaquo([1,2;2,-1]); mfparams(F) %4 = [16, 1/2, 1, y, t - 1] ? mfcoefs(F,10) %5 = [1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0] ? mffrometaquo(Mat([1,-24])) %6 = 0 ? f = mffrometaquo(Mat([1,-24]),1); mfcoefs(f,6) %7 = [1, 24, 324, 3200, 25650, 176256, 1073720] @eprog\noindent For convenience, a \typ{VEC} is also accepted instead of a factorization matrix with a single row: \bprog ? f = mffrometaquo([1,24]); \\ also valid @eprog