Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: mfgaloisprojrep Section: modular_forms C-Name: mfgaloisprojrep Prototype: GGp Help: mfgaloisprojrep(mf,F): mf being an mf output by mfinit in weight 1, and F an eigenform, returns a polynomial defining the field fixed by the kernel of the projective representation associated to F. Doc: \var{mf} being an \kbd{mf} output by \kbd{mfinit} in weight $1$, return a polynomial defining the field fixed by the kernel of the projective Artin representation attached to \var{F} (by Deligne--Serre). Currently only implemented for projective image~$A_4$ and~$S_4$. \bprog \\ A4 example ? mf = mfinit([4*31,1,Mod(87,124)],0); ? F = mfeigenbasis(mf)[1]; ? mfgaloistype(mf,F) %3 = -12 ? pol = mfgaloisprojrep(mf,F) %4 = x^12 + 68*x^10 + 4808*x^8 + ... + 4096 ? G = galoisinit(pol); galoisidentify(G) %5 = [12,3] \\A4 ? pol4 = polredbest(galoisfixedfield(G,G.gen[3], 1)) %6 = x^4 + 7*x^2 - 2*x + 14 ? polgalois(pol4) %7 = [12, 1, 1, "A4"] ? factor(nfdisc(pol4)) %8 = [ 2 4] [31 2] \\ S4 example ? mf = mfinit([4*37,1,Mod(105,148)],0); ? F = mfeigenbasis(mf)[1]; ? mfgaloistype(mf,F) %11 = -24 ? pol = mfgaloisprojrep(mf,F) %12 = x^24 + 24*x^22 + 256*x^20 + ... + 255488256 ? G = galoisinit(pol); galoisidentify(G) %13 = [24, 12] \\S4 ? pol4 = polredbest(galoisfixedfield(G,G.gen[3..4], 1)) %14 = x^4 - x^3 + 5*x^2 - 7*x + 12 ? polgalois(pol4) %15 = [24, -1, 1, "S4"] ? factor(nfdisc(pol4)) %16 = [ 2 2] [37 3] @eprog