Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: mspadicL Section: modular_symbols C-Name: mspadicL Prototype: GDGD0,L, Help: mspadicL(mu, {s = 0}, {r = 0}): given mu from mspadicmoments (p-adic distributions attached to an overconvergent symbol PHI) returns the value on a character of Z_p^* represented by s of the derivative of order r of the p-adic L-function attached to PHI. Doc: Returns the value (or $r$-th derivative) on a character $\chi^s$ of $\Z_p^*$ of the $p$-adic $L$-function attached to \kbd{mu}. Let $\Phi$ be the $p$-adic distribution-valued overconvergent symbol attached to a modular symbol $\phi$ for $\Gamma_0(N)$ (eigenvector for $T_N(p)$ for the eigenvalue $a_p$). Then $L_p(\Phi,\chi^s)=L_p(\mu,s)$ is the $p$-adic $L$ function defined by $$L_p(\Phi,\chi^s)= \int_{\Z_p^*} \chi^s(z) d\mu(z)$$ where $\mu$ is the distribution on $\Z_p^*$ defined by the restriction of $\Phi([\infty]-[0])$ to $\Z_p^*$. The $r$-th derivative is taken in direction $\langle \chi\rangle$: $$L_p^{(r)}(\Phi,\chi^s)= \int_{\Z_p^*} \chi^s(z) (\log z)^r d\mu(z).$$ In the argument list, \item \kbd{mu} is as returned by \tet{mspadicmoments} (distributions attached to $\Phi$ by restriction to discs $a + p^\nu\Z_p$, $(a,p)=1$). \item $s=[s_1,s_2]$ with $s_1 \in \Z \subset \Z_p$ and $s_2 \bmod p-1$ or $s_2 \bmod 2$ for $p=2$, encoding the $p$-adic character $\chi^s := \langle \chi \rangle^{s_1} \tau^{s_2}$; here $\chi$ is the cyclotomic character from $\text{Gal}(\Q_p(\mu_{p^\infty})/\Q_p)$ to $\Z_p^*$, and $\tau$ is the Teichm\"uller character (for $p>2$ and the character of order 2 on $(\Z/4\Z)^*$ if $p=2$); for convenience, the character $[s,s]$ can also be represented by the integer $s$. When $a_p$ is a $p$-adic unit, $L_p$ takes its values in $\Q_p$. When $a_p$ is not a unit, it takes its values in the two-dimensional $\Q_p$-vector space $D_{cris}(M(\phi))$ where $M(\phi)$ is the ``motive'' attached to $\phi$, and we return the two $p$-adic components with respect to some fixed $\Q_p$-basis. \bprog ? M = msinit(3,6,1); phi=[5, -3, -1]~; ? msissymbol(M,phi) %2 = 1 ? Mp = mspadicinit(M, 5, 4); ? mu = mspadicmoments(Mp, phi); \\ no twist \\ End of initializations ? mspadicL(mu,0) \\ L_p(chi^0) %5 = 5 + 2*5^2 + 2*5^3 + 2*5^4 + ... ? mspadicL(mu,1) \\ L_p(chi), zero for parity reasons %6 = [O(5^13)]~ ? mspadicL(mu,2) \\ L_p(chi^2) %7 = 3 + 4*5 + 4*5^2 + 3*5^5 + ... ? mspadicL(mu,[0,2]) \\ L_p(tau^2) %8 = 3 + 5 + 2*5^2 + 2*5^3 + ... ? mspadicL(mu, [1,0]) \\ L_p(<chi>) %9 = 3*5 + 2*5^2 + 5^3 + 2*5^7 + 5^8 + 5^10 + 2*5^11 + O(5^13) ? mspadicL(mu,0,1) \\ L_p'(chi^0) %10 = 2*5 + 4*5^2 + 3*5^3 + ... ? mspadicL(mu, 2, 1) \\ L_p'(chi^2) %11 = 4*5 + 3*5^2 + 5^3 + 5^4 + ... @eprog Now several quadratic twists: \tet{mstooms} is indicated. \bprog ? PHI = mstooms(Mp,phi); ? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12 ? mspadicL(mu) %14 = 5 + 5^2 + 5^3 + 2*5^4 + ... ? mu = mspadicmoments(Mp, PHI, 8); \\ twist by 8 ? mspadicL(mu) %16 = 2 + 3*5 + 3*5^2 + 2*5^4 + ... ? mu = mspadicmoments(Mp, PHI, -3); \\ twist by -3 < 0 ? mspadicL(mu) %18 = O(5^13) \\ always 0, phi is in the + part and D < 0 @eprog One can locate interesting symbols of level $N$ and weight $k$ with \kbd{msnew} and \kbd{mssplit}. Note that instead of a symbol, one can input a 1-dimensional Hecke-subspace from \kbd{mssplit}: the function will automatically use the underlying basis vector. \bprog ? M=msinit(5,4,1); \\ M_4(Gamma_0(5))^+ ? L = mssplit(M, msnew(M)); \\ list of irreducible Hecke-subspaces ? phi = L[1]; \\ one Galois orbit of newforms ? #phi[1] \\... this one is rational %4 = 1 ? Mp = mspadicinit(M, 3, 4); ? mu = mspadicmoments(Mp, phi); ? mspadicL(mu) %7 = 1 + 3 + 3^3 + 3^4 + 2*3^5 + 3^6 + O(3^9) ? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+ ? Mp = mspadicinit(M, 3, 4); ? L = mssplit(M, msnew(M)); ? phi = L[1]; #phi[1] \\ ... this one is two-dimensional %11 = 2 ? mu = mspadicmoments(Mp, phi); *** at top-level: mu=mspadicmoments(Mp,ph *** ^-------------------- *** mspadicmoments: incorrect type in mstooms [dim_Q (eigenspace) > 1] @eprog