Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: mspadicseries Section: modular_symbols C-Name: mspadicseries Prototype: GD0,L, Help: mspadicseries(mu, {i=0}): given mu from mspadicmoments, returns the attached p-adic series with maximal p-adic precision, depending on the precision of M (i-th Teichmueller component, if present). Doc: Let $\Phi$ be the $p$-adic distribution-valued overconvergent symbol attached to a modular symbol $\phi$ for $\Gamma_0(N)$ (eigenvector for $T_N(p)$ for the eigenvalue $a_p$). If $\mu$ is the distribution on $\Z_p^*$ defined by the restriction of $\Phi([\infty]-[0])$ to $\Z_p^*$, let $$\hat{L}_p(\mu,\tau^{i})(x) = \int_{\Z_p^*} \tau^i(t) (1+x)^{\log_p(t)/\log_p(u)}d\mu(t)$$ Here, $\tau$ is the Teichm\"uller character and $u$ is a specific multiplicative generator of $1+2p\Z_p$. (Namely $1+p$ if $p>2$ or $5$ if $p=2$.) To explain the formula, let $G_\infty := \text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$, let $\chi:G_\infty\to \Z_p^*$ be the cyclotomic character (isomorphism) and $\gamma$ the element of $G_\infty$ such that $\chi(\gamma)=u$; then $\chi(\gamma)^{\log_p(t)/\log_p(u)}= \langle t \rangle$. The $p$-padic precision of individual terms is maximal given the precision of the overconvergent symbol $\mu$. \bprog ? [M,phi] = msfromell(ellinit("17a1"),1); ? Mp = mspadicinit(M, 5,7); ? mu = mspadicmoments(Mp, phi,1); \\ overconvergent symbol ? mspadicseries(mu) %4 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + 4*5^6 + 3*5^7 + O(5^9)) \ + (3 + 3*5 + 5^2 + 5^3 + 2*5^4 + 5^6 + O(5^7))*x \ + (2 + 3*5 + 5^2 + 4*5^3 + 2*5^4 + O(5^5))*x^2 \ + (3 + 4*5 + 4*5^2 + O(5^3))*x^3 \ + (3 + O(5))*x^4 + O(x^5) @eprog\noindent An example with nonzero Teichm\"uller: \bprog ? [M,phi] = msfromell(ellinit("11a1"),1); ? Mp = mspadicinit(M, 3,10); ? mu = mspadicmoments(Mp, phi,1); ? mspadicseries(mu, 2) %4 = (2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + 3^7 + 3^10 + 3^11 + O(3^12)) \ + (1 + 3 + 2*3^2 + 3^3 + 3^5 + 2*3^6 + 2*3^8 + O(3^9))*x \ + (1 + 2*3 + 3^4 + 2*3^5 + O(3^6))*x^2 \ + (3 + O(3^2))*x^3 + O(x^4) @eprog\noindent Supersingular example (not checked) \bprog ? E = ellinit("17a1"); ellap(E,3) %1 = 0 ? [M,phi] = msfromell(E,1); ? Mp = mspadicinit(M, 3,7); ? mu = mspadicmoments(Mp, phi,1); ? mspadicseries(mu) %5 = [(2*3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \ + (2 + 3^3 + O(3^5))*x \ + (1 + 2*3 + O(3^2))*x^2 + O(x^3),\ (3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \ + (1 + 2*3 + 2*3^2 + 3^3 + 2*3^4 + O(3^5))*x \ + (3^-2 + 3^-1 + O(3^2))*x^2 + O(3^-2)*x^3 + O(x^4)] @eprog\noindent Example with a twist: \bprog ? E = ellinit("11a1"); ? [M,phi] = msfromell(E,1); ? Mp = mspadicinit(M, 3,10); ? mu = mspadicmoments(Mp, phi,5); \\ twist by 5 ? L = mspadicseries(mu) %5 = (2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)) \ + (2*3^2 + 2*3^6 + 3^7 + 3^8 + O(3^9))*x \ + (3^3 + O(3^6))*x^2 + O(3^2)*x^3 + O(x^4) ? mspadicL(mu) %6 = [2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)]~ ? ellpadicL(E,3,10,,5) %7 = 2 + 2*3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^6 + 2*3^7 + O(3^10) ? mspadicseries(mu,1) \\ must be 0 %8 = O(3^12) + O(3^9)*x + O(3^6)*x^2 + O(3^2)*x^3 + O(x^4) @eprog