Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: bnrrootnumber Section: number_fields C-Name: bnrrootnumber Prototype: GGD0,L,p Help: bnrrootnumber(bnr,chi,{flag=0}): returns the so-called Artin Root Number, i.e. the constant W appearing in the functional equation of the Hecke L-function attached to chi. Set flag = 1 if the character is known to be primitive. Doc: if $\chi=\var{chi}$ is a \idx{character} over \var{bnr}, not necessarily primitive, let $L(s,\chi) = \sum_{id} \chi(id) N(id)^{-s}$ be the attached \idx{Artin L-function}. Returns the so-called \idx{Artin root number}, i.e.~the complex number $W(\chi)$ of modulus 1 such that % $$\Lambda(1-s,\chi) = W(\chi) \Lambda(s,\overline{\chi})$$ % \noindent where $\Lambda(s,\chi) = A(\chi)^{s/2}\gamma_\chi(s) L(s,\chi)$ is the enlarged L-function attached to $L$. You can set $\fl=1$ if the character is known to be primitive. Example: \bprog bnf = bnfinit(x^2 - x - 57); bnr = bnrinit(bnf, [7,[1,1]]); bnrrootnumber(bnr, [2,1]) @eprog\noindent returns the root number of the character $\chi$ of $\Cl_{7\infty_1\infty_2}(\Q(\sqrt{229}))$ defined by $\chi(g_1^ag_2^b) = \zeta_1^{2a}\zeta_2^b$. Here $g_1, g_2$ are the generators of the ray-class group given by \kbd{bnr.gen} and $\zeta_1 = e^{2i\pi/N_1}, \zeta_2 = e^{2i\pi/N_2}$ where $N_1, N_2$ are the orders of $g_1$ and $g_2$ respectively ($N_1=6$ and $N_2=3$ as \kbd{bnr.cyc} readily tells us).