Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: galoisexport Section: number_fields C-Name: galoisexport Prototype: GD0,L, Help: galoisexport(gal,{flag}): gal being a Galois group as output by galoisinit, output a string representing the underlying permutation group in GAP notation (default) or Magma notation (flag = 1). Doc: \var{gal} being be a Galois group as output by \tet{galoisinit}, export the underlying permutation group as a string suitable for (no flags or $\fl=0$) GAP or ($\fl=1$) Magma. The following example compute the index of the underlying abstract group in the GAP library: \bprog ? G = galoisinit(x^6+108); ? s = galoisexport(G) %2 = "Group((1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5))" ? extern("echo \"IdGroup("s");\" | gap -q") %3 = [6, 1] ? galoisidentify(G) %4 = [6, 1] @eprog\noindent This command also accepts subgroups returned by \kbd{galoissubgroups}. To \emph{import} a GAP permutation into gp (for \tet{galoissubfields} for instance), the following GAP function may be useful: \bprog PermToGP := function(p, n) return Permuted([1..n],p); end; gap> p:= (1,26)(2,5)(3,17)(4,32)(6,9)(7,11)(8,24)(10,13)(12,15)(14,27) (16,22)(18,28)(19,20)(21,29)(23,31)(25,30) gap> PermToGP(p,32); [ 26, 5, 17, 32, 2, 9, 11, 24, 6, 13, 7, 15, 10, 27, 12, 22, 3, 28, 20, 19, 29, 16, 31, 8, 30, 1, 14, 18, 21, 25, 23, 4 ] @eprog