Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Testing latest pari + WASM + node.js... and it works?! Wow.

28495 views
License: GPL3
ubuntu2004
Function: fft
Section: polynomials
C-Name: FFT
Prototype: GG
Help: fft(w,P): given w from rootsof1, return the discrete Fourier transform
 of P.
Doc: Let $w=[1,z,\ldots,z^{N-1}]$ from some primitive $N$-roots of unity $z$
 where $N$ is a power of $2$, and $P$ be a polynomial $< N$,
 return the unnormalized discrete Fourier transform of $P$,
 $\{ P(w[i]), 1 \leq i \leq N\}$. Also allow $P$ to be a vector
 $[p_0,\dots,p_n]$ representing the polynomial $\sum p_i X^i$.
 Composing \kbd{fft} and \kbd{fftinv} returns $N$ times the original input
 coefficients.
 \bprog
 ? w = rootsof1(4); fft(w, x^3+x+1)
 %1 = [3, 1, -1, 1]
 ? fftinv(w, %)
 %2 = [4, 4, 0, 4]
 ? Polrev(%) / 4
 %3 = x^3 + x + 1
 ? w = powers(znprimroot(5),3); fft(w, x^3+x+1)
 %4 = [Mod(3,5),Mod(1,5),Mod(4,5),Mod(1,5)]
 ? fftinv(w, %)
 %5 = [Mod(4,5),Mod(4,5),Mod(0,5),Mod(4,5)]
 @eprog