Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: polhermite Section: polynomials C-Name: polhermite_eval0 Prototype: LDGD0,L, Help: polhermite(n,{a='x},{flag=0}): Hermite polynomial H(n,v) of degree n, evaluated at a. If flag is nonzero, return [H_{n-1}(a), H_n(a)]. Description: (small,?var):gen polhermite($1,$2) (small,gen):gen polhermite_eval($1,$2) Doc: $n^{\text{th}}$ \idx{Hermite} polynomial $H_n$ evaluated at $a$ (\kbd{'x} by default), i.e. $$ H_n(x) = (-1)^n\*e^{x^2} \dfrac{d^n}{dx^n}e^{-x^2}.$$ If \fl\ is nonzero and $n > 0$, return $[H_{n-1}(a), H_n(a)]$. \bprog ? polhermite(5) %1 = 32*x^5 - 160*x^3 + 120*x ? polhermite(5, -2) \\ H_5(-2) %2 = 16 ? polhermite(5,,1) %3 = [16*x^4 - 48*x^2 + 12, 32*x^5 - 160*x^3 + 120*x] ? polhermite(5,-2,1) %4 = [76, 16] @eprog Variant: The variant \fun{GEN}{polhermite}{long n, long v} returns the $n$-th Hermite polynomial in variable $v$. To obtain $H_n(a)$, use \fun{GEN}{polhermite_eval}{long n, GEN a}.