Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Testing latest pari + WASM + node.js... and it works?! Wow.

28495 views
License: GPL3
ubuntu2004
Function: polinterpolate
Section: polynomials
C-Name: polint
Prototype: GDGDGD&
Help: polinterpolate(X,{Y},{t = 'x},{&e}): polynomial interpolation at t
 according to data vectors X, Y, i.e., given P of minimal degree
 such that P(X[i]) = Y[i] for all i, return P(t). If Y is omitted,
 take P such that P(i) = X[i]. If present and t is numeric, e will contain an
 error estimate on the returned value (Neville's algorithm).
Doc: given the data vectors $X$ and $Y$ of the same length $n$
 ($X$ containing the $x$-coordinates, and $Y$ the corresponding
 $y$-coordinates), this function finds the \idx{interpolating polynomial}
 $P$ of minimal degree passing through these points and evaluates it at~$t$.
 If $Y$ is omitted, the polynomial $P$ interpolates the $(i,X[i])$.

 \bprog
 ? v = [1, 2, 4, 8, 11, 13];
 ? P = polinterpolate(v) \\ formal interpolation
 %1 = 7/120*x^5 - 25/24*x^4 + 163/24*x^3 - 467/24*x^2 + 513/20*x - 11
 ? [ subst(P,'x,a) | a <- [1..6] ]
 %2 = [1, 2, 4, 8, 11, 13]
 ? polinterpolate(v,, 10) \\ evaluate at 10
 %3 = 508
 ? subst(P, x, 10)
 %4 = 508

 ? P = polinterpolate([1,2,4], [9,8,7])
 %5 = 1/6*x^2 - 3/2*x + 31/3
 ? [subst(P, 'x, a) | a <- [1,2,4]]
 %6 = [9, 8, 7]
 ? P = polinterpolate([1,2,4], [9,8,7], 0)
 %7 = 31/3
 @eprog\noindent If the goal is to extrapolate a function at a unique point,
 it is more efficient to use the $t$ argument rather than interpolate formally
 then evaluate:
 \bprog
 ? x0 = 1.5;
 ? v = vector(20, i,random([-10,10]));
 ? for(i=1,10^3, subst(polinterpolate(v),'x, x0))
 time = 352 ms.
 ? for(i=1,10^3, polinterpolate(v,,x0))
 time = 111 ms.

 ? v = vector(40, i,random([-10,10]));
 ? for(i=1,10^3, subst(polinterpolate(v), 'x, x0))
 time = 3,035 ms.
 ? for(i=1,10^3, polinterpolate(v,, x0))
 time = 436 ms.
 @eprog\noindent The threshold depends on the base field. Over small prime
 finite fields, interpolating formally first is more efficient
 \bprog
 ? bench(p, N, T = 10^3) =
   { my (v = vector(N, i, random(Mod(0,p))));
     my (x0 = Mod(3, p), t1, t2);
     gettime();
     for(i=1, T, subst(polinterpolate(v), 'x, x0));
     t1 = gettime();
     for(i=1, T, polinterpolate(v,, x0));
     t2 = gettime(); [t1, t2];
   }
 ? p = 101;
 ? bench(p, 4, 10^4) \\ both methods are equivalent
 %3 = [39, 40]
 ? bench(p, 40) \\ with 40 points formal is much faster
 %4 = [45, 355]
 @eprog\noindent As the cardinality increases, formal interpolation requires
 more points to become interesting:
 \bprog
 ? p = nextprime(2^128);
 ? bench(p, 4) \\ formal is slower
 %3 = [16, 9]
 ? bench(p, 10) \\ formal has become faster
 %4 = [61, 70]
 ? bench(p, 100) \\ formal is much faster
 %5 = [1682, 9081]

 ? p = nextprime(10^500);
 ? bench(p, 4) \\ formal is slower
 %7 = [72, 354]
 ? bench(p, 20) \\ formal is still slower
 %8 = [1287, 962]
 ? bench(p, 40) \\ formal has become faster
 %9 = [3717, 4227]
 ? bench(p, 100) \\ faster but relatively less impressive
 %10 = [16237, 32335]
 @eprog

 If $t$ is a complex numeric value and $e$ is present, $e$ will contain an
 error estimate on the returned value. More precisely, let $P$ be the
 interpolation polynomial on the given $n$ points; there exist a subset
 of $n-1$ points and $Q$ the attached interpolation polynomial
 such that $e = \kbd{exponent}(P(t) - Q(t))$ (Neville's algorithm).
 \bprog
 ? f(x) = 1 / (1 + 25*x^2);
 ? x0 = 975/1000;
 ? test(X) =
   { my (P, e);
     P = polinterpolate(X, [f(x) | x <- X], x0, &e);
     [ exponent(P - f(x0)), e ];
   }
 \\ equidistant nodes vs. Chebyshev nodes
 ? test( [-10..10] / 10 )
 %4 = [6, 5]
 ? test( polrootsreal(polchebyshev(21)) )
 %5 = [-15, -10]

 ? test( [-100..100] / 100 )
 %7 = [93, 97] \\ P(x0) is way different from f(x0)
 ? test( polrootsreal(polchebyshev(201)) )
 %8 = [-60, -55]
 @eprog\noindent This is an example of Runge's phenomenon: increasing the
 number of equidistant nodes makes extrapolation much worse. Note that the
 error estimate is not a guaranteed upper bound (cf \%4), but is reasonably
 tight in practice.

 \misctitle{Numerical stability} The interpolation is performed in
 a numerically stable way using $\prod_{j\neq i} (X[i] - X[j])$ instead of
 $Q'(X[i])$ with $Q = \prod_i (x - X[i])$. Centering the interpolation
 points $X[i]$ around $0$, thereby reconstructing $P(x - m)$, for a suitable
 $m$ will further reduce the numerical error.