Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: polmodular Section: polynomials C-Name: polmodular Prototype: LD0,L,DGDnD0,L, Help: polmodular(L, {inv = 0}, {x = 'x}, {y = 'y}, {derivs = 0}): return the modular polynomial of level L and invariant inv. Doc: Return the modular polynomial of prime level $L$ in variables $x$ and $y$ for the modular function specified by \kbd{inv}. If \kbd{inv} is 0 (the default), use the modular $j$ function, if \kbd{inv} is 1 use the Weber-$f$ function, and if \kbd{inv} is 5 use $\gamma_2 = \sqrt[3]{j}$. See \kbd{polclass} for the full list of invariants. If $x$ is given as \kbd{Mod(j, p)} or an element $j$ of a finite field (as a \typ{FFELT}), then return the modular polynomial of level $L$ evaluated at $j$. If $j$ is from a finite field and \kbd{derivs} is nonzero, then return a triple where the last two elements are the first and second derivatives of the modular polynomial evaluated at $j$. \bprog ? polmodular(3) %1 = x^4 + (-y^3 + 2232*y^2 - 1069956*y + 36864000)*x^3 + ... ? polmodular(7, 1, , 'J) %2 = x^8 - J^7*x^7 + 7*J^4*x^4 - 8*J*x + J^8 ? polmodular(7, 5, 7*ffgen(19)^0, 'j) %3 = j^8 + 4*j^7 + 4*j^6 + 8*j^5 + j^4 + 12*j^2 + 18*j + 18 ? polmodular(7, 5, Mod(7,19), 'j) %4 = Mod(1, 19)*j^8 + Mod(4, 19)*j^7 + Mod(4, 19)*j^6 + ... ? u = ffgen(5)^0; T = polmodular(3,0,,'j)*u; ? polmodular(3, 0, u,'j,1) %6 = [j^4 + 3*j^2 + 4*j + 1, 3*j^2 + 2*j + 4, 3*j^3 + 4*j^2 + 4*j + 2] ? subst(T,x,u) %7 = j^4 + 3*j^2 + 4*j + 1 ? subst(T',x,u) %8 = 3*j^2 + 2*j + 4 ? subst(T'',x,u) %9 = 3*j^3 + 4*j^2 + 4*j + 2 @eprog Function: _polmodular_worker Section: programming/internals C-Name: polmodular_worker Prototype: GUGGGGLGG Help: used by polmodular Doc: used by polmodular