Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Testing latest pari + WASM + node.js... and it works?! Wow.

28495 views
License: GPL3
ubuntu2004
Function: polzagier
Section: polynomials
C-Name: polzag
Prototype: LL
Help: polzagier(n,m): Zagier's polynomials of index n,m.
Doc: creates Zagier's polynomial $P_n^{(m)}$ used in
 the functions \kbd{sumalt} and \kbd{sumpos} (with $\fl=1$), see
 ``Convergence acceleration of alternating series'', Cohen et al.,
 \emph{Experiment.~Math.}, vol.~9, 2000, pp.~3--12.

 If $m < 0$ or $m \ge n$, $P_n^{(m)} = 0$.
 We have
 $P_n := P_n^{(0)}$ is $T_n(2x-1)$, where $T_n$ is the Legendre polynomial of
 the second kind. For $n > m > 0$, $P_n^{(m)}$ is the $m$-th difference with
 step $2$ of the sequence $n^{m+1}P_n$; in this case, it satisfies
 $$2 P_n^{(m)}(sin^2 t) = \dfrac{d^{m+1}}{dt^{m+1}}(\sin(2t)^m \sin(2(n-m)t)).$$

 %@article {MR2001m:11222,
 %    AUTHOR = {Cohen, Henri and Rodriguez Villegas, Fernando and Zagier, Don},
 %     TITLE = {Convergence acceleration of alternating series},
 %   JOURNAL = {Experiment. Math.},
 %    VOLUME = {9},
 %      YEAR = {2000},
 %    NUMBER = {1},
 %     PAGES = {3--12},
 %}