Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Testing latest pari + WASM + node.js... and it works?! Wow.

28493 views
License: GPL3
ubuntu2004
Function: apply
Section: programming/specific
C-Name: apply0
Prototype: GG
Help: apply(f, A): apply function f to each entry in A.
Wrapper: (G)
Description:
  (closure,gen):gen    genapply(${1 cookie}, ${1 wrapper}, $2)
Doc: Apply the \typ{CLOSURE} \kbd{f} to the entries of \kbd{A}.

 \item If \kbd{A} is a scalar, return \kbd{f(A)}.

 \item If \kbd{A} is a polynomial or power series $\sum a_i x^i$ ($+
 O(x^N)$), apply \kbd{f} on all coefficients and return $\sum f(a_i) x^i$ ($+
 O(x^N)$).

 \item If \kbd{A} is a vector or list $[a_1,\dots,a_n]$, return the vector
 or list $[f(a_1),\dots, f(a_n)]$. If \kbd{A} is a matrix, return the matrix
 whose entries are the $f(\kbd{A[i,j]})$.

 \bprog
 ? apply(x->x^2, [1,2,3,4])
 %1 = [1, 4, 9, 16]
 ? apply(x->x^2, [1,2;3,4])
 %2 =
 [1 4]

 [9 16]
 ? apply(x->x^2, 4*x^2 + 3*x+ 2)
 %3 = 16*x^2 + 9*x + 4
 ? apply(sign, 2 - 3* x + 4*x^2 + O(x^3))
 %4 = 1 - x + x^2 + O(x^3)
 @eprog\noindent Note that many functions already act componentwise on
 vectors or matrices, but they almost never act on lists; in this case,
 \kbd{apply} is a good solution:
 \bprog
 ? L = List([Mod(1,3), Mod(2,4)]);
 ? lift(L)
   ***   at top-level: lift(L)
   ***                 ^-------
   *** lift: incorrect type in lift.
 ? apply(lift, L);
 %2 = List([1, 2])
 @eprog
 \misctitle{Remark} For $v$ a \typ{VEC}, \typ{COL}, \typ{VECSMALL},
 \typ{LIST} or \typ{MAT}, the alternative set-notations
 \bprog
 [g(x) | x <- v, f(x)]
 [x | x <- v, f(x)]
 [g(x) | x <- v]
 @eprog\noindent
 are available as shortcuts for
 \bprog
 apply(g, select(f, Vec(v)))
 select(f, Vec(v))
 apply(g, Vec(v))
 @eprog\noindent respectively:
 \bprog
 ? L = List([Mod(1,3), Mod(2,4)]);
 ? [ lift(x) | x<-L ]
 %2 = [1, 2]
 @eprog

 \synt{genapply}{void *E, GEN (*fun)(void*,GEN), GEN a}.