Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: sumnummonien Section: sums C-Name: sumnummonien0 Prototype: V=GEDGp Help: sumnummonien(n=a,f,{tab}): numerical summation from n = a to +infinity using Monien summation. Wrapper: (,G) Description: (gen,gen,?gen):gen:prec sumnummonien(${2 cookie}, ${2 wrapper}, $1, $3, $prec) Doc: numerical summation $\sum_{n\geq a} f(n)$ at high accuracy, the variable $n$ taking values from the integer $a$ to $+\infty$ using Monien summation, which assumes that $f(1/z)$ has a complex analytic continuation in a (complex) neighbourhood of the segment $[0,1]$. The function $f$ is evaluated at $O(D / \log D)$ real arguments, where $D \approx \kbd{realprecision} \cdot \log(10)$. By default, assume that $f(n) = O(n^{-2})$ and has a nonzero asymptotic expansion $$f(n) = \sum_{i\geq 2} a_i n^{-i}$$ at infinity. To handle more complicated behaviors and allow time-saving precomputations (for a given \kbd{realprecision}), see \kbd{sumnummonieninit}.