Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: gammamellininvinit Section: transcendental C-Name: gammamellininvinit Prototype: GD0,L,b Help: gammamellininvinit(A,{m=0}): initialize data for the computation by gammamellininv() of the m-th derivative of the inverse Mellin transform of the function f(s) = Gamma_R(s+a1)*...*Gamma_R(s+ad), where A is the vector [a1,...,ad] and Gamma_R(s) = Pi^(-s/2)*gamma(s/2). Doc: initialize data for the computation by \tet{gammamellininv} of the $m$-th derivative of the inverse Mellin transform of the function $$f(s) = \Gamma_\R(s+a_1)\*\ldots\*\Gamma_\R(s+a_d)$$ where \kbd{A} is the vector $[a_1,\ldots,a_d]$ and $\Gamma_\R(s)=\pi^{-s/2}\*\Gamma(s/2)$ (Euler's \kbd{gamma}). This is the special case of Meijer's $G$ functions used to compute $L$-values via the approximate functional equation. By extension, $A$ is allowed to be an \kbd{Ldata} or an \kbd{Linit}, understood as the inverse Mellin transform of the $L$-function gamma factor. \misctitle{Caveat} Contrary to the PARI convention, this function guarantees an \emph{absolute} (rather than relative) error bound. For instance, the inverse Mellin transform of $\Gamma_\R(s)$ is $2\exp(-\pi z^2)$: \bprog ? G = gammamellininvinit([0]); ? gammamellininv(G, 2) - 2*exp(-Pi*2^2) %2 = -4.484155085839414627 E-44 @eprog The inverse Mellin transform of $\Gamma_\R(s+1)$ is $2 z\exp(-\pi z^2)$, and its second derivative is $ 4\pi z \exp(-\pi z^2)(2\pi z^2 - 3)$: \bprog ? G = gammamellininvinit([1], 2); ? a(z) = 4*Pi*z*exp(-Pi*z^2)*(2*Pi*z^2-3); ? b(z) = gammamellininv(G,z); ? t(z) = b(z) - a(z); ? t(3/2) %3 = -1.4693679385278593850 E-39 @eprog