Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Testing latest pari + WASM + node.js... and it works?! Wow.

28485 views
License: GPL3
ubuntu2004
1
typedef struct whatnow_t
2
{
3
const char *old, *name, *oldarg, *newarg;
4
} whatnow_t;
5
6
#define SAME NULL
7
#define REMOV (char *)1L
8
9
#define _REMOV REMOV,NULL,NULL
10
#define _SAME SAME,NULL,NULL
11
static const whatnow_t whatnowlist[]={
12
{"!_",_SAME},
13
{"#_",_SAME},
14
{"%",_SAME},
15
{"+_",_SAME},
16
{"-_",_SAME},
17
{"_!",_SAME},
18
{"_!=_",_SAME},
19
{"_%=_",_SAME},
20
{"_%_",_SAME},
21
{"_&&_",_SAME},
22
{"_'",_SAME},
23
{"_*=_",_SAME},
24
{"_*_",_SAME},
25
{"_++",_SAME},
26
{"_+=_",_SAME},
27
{"_+_",_SAME},
28
{"_--",_SAME},
29
{"_-=_",_SAME},
30
{"_-_",_SAME},
31
{"_.a1",_SAME},
32
{"_.a2",_SAME},
33
{"_.a3",_SAME},
34
{"_.a4",_SAME},
35
{"_.a6",_SAME},
36
{"_.area",_SAME},
37
{"_.b2",_SAME},
38
{"_.b4",_SAME},
39
{"_.b6",_SAME},
40
{"_.b8",_SAME},
41
{"_.bid",_SAME},
42
{"_.bnf",_SAME},
43
{"_.c4",_SAME},
44
{"_.c6",_SAME},
45
{"_.clgp",_SAME},
46
{"_.codiff",_SAME},
47
{"_.cyc",_SAME},
48
{"_.diff",_SAME},
49
{"_.disc",_SAME},
50
{"_.e",_SAME},
51
{"_.eta",_SAME},
52
{"_.f",_SAME},
53
{"_.fu",_SAME},
54
{"_.futu",_SAME},
55
{"_.gen",_SAME},
56
{"_.group",_SAME},
57
{"_.index",_SAME},
58
{"_.j",_SAME},
59
{"_.mod",_SAME},
60
{"_.nf",_SAME},
61
{"_.no",_SAME},
62
{"_.omega",_SAME},
63
{"_.orders",_SAME},
64
{"_.p",_SAME},
65
{"_.pol",_SAME},
66
{"_.r1",_SAME},
67
{"_.r2",_SAME},
68
{"_.reg",_SAME},
69
{"_.roots",_SAME},
70
{"_.sign",_SAME},
71
{"_.t2",_SAME},
72
{"_.tate",_SAME},
73
{"_.tu",_SAME},
74
{"_.tufu",_SAME},
75
{"_.zk",_SAME},
76
{"_.zkst",_SAME},
77
{"_/=_",_SAME},
78
{"_/_",_SAME},
79
{"_<<=_",_SAME},
80
{"_<<_",_SAME},
81
{"_<=_",_SAME},
82
{"_<_",_SAME},
83
{"_==_",_SAME},
84
{"_>=_",_SAME},
85
{"_>>=_",_SAME},
86
{"_>>_",_SAME},
87
{"_>_",_SAME},
88
{"_[_.._,_.._]",_SAME},
89
{"_[_.._]",_SAME},
90
{"_\\/=_",_SAME},
91
{"_\\/_",_SAME},
92
{"_\\=_",_SAME},
93
{"_\\_",_SAME},
94
{"_^_",_SAME},
95
{"_^s",_SAME},
96
{"__",_SAME},
97
{"_derivfun",_SAME},
98
{"_eval_mnemonic",_SAME},
99
{"_multi_if",_SAME},
100
{"_void_if",_SAME},
101
{"_||_",_SAME},
102
{"_~",_SAME},
103
{"O",_SAME},
104
{"O(_^_)",_SAME},
105
{"Str",_SAME},
106
{"abs",_SAME},
107
{"acos",_SAME},
108
{"acosh",_SAME},
109
{"addell","elladd","(e,z1,z2)","(e,z1,z2)"},
110
{"addprimes",_SAME},
111
{"adj","matadjoint","(x)","(x)"},
112
{"agm",_SAME},
113
{"akell","ellak","(e,n)","(e,n)"},
114
{"algdep",_SAME},
115
{"algdep2","algdep","(x,n,dec)","(x,n,dec)"},
116
{"algtobasis","nfalgtobasis","(nf,x)","(nf,x)"},
117
{"anell","ellan","(e,n)","(e,n)"},
118
{"apell","ellap","(e,n)","(e,n)"},
119
{"apell2","ellap","(e,n)","(e,n)"},
120
{"apprpadic","padicappr","(x,a)","(x,a)"},
121
{"arg",_SAME},
122
{"asin",_SAME},
123
{"asinh",_SAME},
124
{"assmat","matcompanion","(x)","(x)"},
125
{"atan",_SAME},
126
{"atanh",_SAME},
127
{"basis","nfbasis","(x)","(x)"},
128
{"basis2","nfbasis","(x)","(x,2)"},
129
{"basistoalg","nfbasistoalg","(nf,x)","(nf,x)"},
130
{"bernreal",_SAME},
131
{"bernvec",_SAME},
132
{"bestappr",_SAME},
133
{"bezout","gcdext","(a,b)","(a,b)"},
134
{"bezoutres",_SAME},
135
{"bigomega",_SAME},
136
{"bilhell","ellbil","(e,z1,z2)","(e,z1,z2)"},
137
{"bin","binomial","(x,y)","(x,y)"},
138
{"binary",_SAME},
139
{"bittest",_SAME},
140
{"boundcf","contfrac","(x,lmax)","(x,,lmax)"},
141
{"boundfact","factor","(x,lim)","(x,lim)"},
142
{"buchcertify","bnfcertify","(bnf)","(bnf)"},
143
{"buchfu",_REMOV},
144
{"buchgen",_REMOV},
145
{"buchgenforcefu",_REMOV},
146
{"buchgenfu",_REMOV},
147
{"buchimag","quadclassunit","(D,c1,c2,g)","(D,,[c1,c2,g])"},
148
{"buchinit","bnfinit","(P)","(P,2)"},
149
{"buchinitforcefu","bnfinit","(P)","(P,1)"},
150
{"buchinitfu","bnfinit","(P)","(P)"},
151
{"buchnarrow","bnfnarrow","(bnf)","(bnf)"},
152
{"buchray","bnrinit","(bnf,ideal)","(bnf,ideal)"},
153
{"buchrayinit","bnrinit","(bnf,ideal)","(bnf,ideal)"},
154
{"buchrayinitgen","bnrinit","(bnf,ideal)","(bnf,ideal,1)"},
155
{"buchreal","quadclassunit","(D)","(D)"},
156
{"bytesize","sizebyte","(x)","(x)"},
157
{"ceil",_SAME},
158
{"centerlift",_SAME},
159
{"cf","contfrac","(x)","(x)"},
160
{"cf2","contfrac","(b,x)","(x,b)"},
161
{"changevar",_REMOV},
162
{"char","charpoly","(x,y)","(x,y)"},
163
{"char1","charpoly","(x,y)","(x,y,1)"},
164
{"char2","charpoly","(x,y)","(x,y,2)"},
165
{"chell","ellchangecurve","(x,y)","(x,y)"},
166
{"chinese",_SAME},
167
{"chptell","ellchangepoint","(x,y)","(x,y)"},
168
{"classno","qfbclassno","(x)","(x)"},
169
{"classno2","qfbclassno","(x)","(x,1)"},
170
{"coeff","polcoeff","(x,s)","(x,s)"},
171
{"compimag","x*y","(x,y)",""},
172
{"compo","component","(x,s)","(x,s)"},
173
{"compositum","polcompositum","(pol1,pol2)","(pol1,pol2)"},
174
{"compositum2","polcompositum","(pol1,pol2)","(pol1,pol2,1)"},
175
{"comprealraw","qfbcompraw","(x,y)","(x,y)"},
176
{"concat",_SAME},
177
{"conductor","bnrconductor","(a1)","(a1)"},
178
{"conductorofchar","bnrconductorofchar","(bnr,chi)","(bnr,chi)"},
179
{"conj",_SAME},
180
{"conjvec",_SAME},
181
{"content",_SAME},
182
{"convol","serconvol","(x,y)","(x,y)"},
183
{"core",_SAME},
184
{"core2","core","(x)","(x,1)"},
185
{"coredisc",_SAME},
186
{"coredisc2","coredisc","(x)","(x,1)"},
187
{"cos",_SAME},
188
{"cosh",_SAME},
189
{"cvtoi","truncate","(x)","(x,&e)"},
190
{"cyclo","polcyclo","(n)","(n)"},
191
{"decodefactor","factorback","(fa)","(fa)"},
192
{"decodemodule","bnfdecodemodule","(nf,fa)","(nf,fa)"},
193
{"degree","poldegree","(x)","(x)"},
194
{"denom","denominator","(x)","(x)"},
195
{"deplin","lindep","(x)","(x,-1)"},
196
{"deriv",_SAME},
197
{"det","matdet","(x)","(x)"},
198
{"det2","matdet","(x)","(x,1)"},
199
{"detint","matdetint","(x)","(x)"},
200
{"diagonal","matdiagonal","(x)","(x)"},
201
{"dilog",_SAME},
202
{"dirdiv",_SAME},
203
{"direuler",_SAME},
204
{"dirmul",_SAME},
205
{"dirzetak",_SAME},
206
{"disc","poldisc","(x)","(x)"},
207
{"discf","nfdisc","(x)","(x)"},
208
{"discf2","nfdisc","(x)","(x,2)"},
209
{"discrayabs","bnrdisc","(bnr,subgroup)","(bnr,subgroup)"},
210
{"discrayabscond","bnrdisc","(bnr)","(bnr,,,2)"},
211
{"discrayabslist","bnrdisclist","(bnf,list)","(bnf,list)"},
212
{"discrayabslistarch","bnrdisclist","(bnf,arch,bound)","(bnf,bound,arch)"},
213
{"discrayabslistarchall","bnrdisclist","(bnf,bound)","(bnf,bound,,1)"},
214
{"discrayabslistlong","bnrdisclist","(bnf,bound)","(bnf,bound)"},
215
{"discrayrel","bnrdisc","(bnr,subgroup)","(bnr,subgroup,,1)"},
216
{"discrayrelcond","bnrdisc","(bnr,subgroup)","(bnr,subgroup,,3)"},
217
{"divisors",_SAME},
218
{"divres","divrem","(x,y)","(x,y)"},
219
{"divsum","sumdiv","(n,X,expr)","(n,X,expr)"},
220
{"eigen","mateigen","(x)","(x)"},
221
{"eint1",_SAME},
222
{"erfc",_SAME},
223
{"eta",_SAME},
224
{"euler","Euler","",""},
225
{"eval",_SAME},
226
{"exp",_SAME},
227
{"extract","vecextract","(x,y)","(x,y)"},
228
{"fact","factorial","(x)","(x)"},
229
{"factcantor","factorcantor","(x,p)","(x,p)"},
230
{"factfq","factorff","(x,p,a)","(x,p,a)"},
231
{"factmod","factormod","(x,p)","(x,p)"},
232
{"factor",_SAME},
233
{"factoredbasis","nfbasis","(x,p)","(x,,p)"},
234
{"factoreddiscf","nfdisc","(x,p)","(x,,p)"},
235
{"factoredpolred","polred","(x,p)","(x,,p)"},
236
{"factoredpolred2","polred","(x,p)","(x,2,p)"},
237
{"factornf",_SAME},
238
{"factorpadic",_SAME},
239
{"factorpadic2","factorpadic","(x,p,r)","(x,p,r,1)"},
240
{"factpol","factor","(x,l,hint)","(x)"},
241
{"factpol2","factor","(x,l,hint)","(x)"},
242
{"fibo","fibonacci","(x)","(x)"},
243
{"floor",_SAME},
244
{"for",_SAME},
245
{"fordiv",_SAME},
246
{"forprime",_SAME},
247
{"forstep",_SAME},
248
{"forvec",_SAME},
249
{"fpn","ffinit","(p,n)","(p,n)"},
250
{"frac",_SAME},
251
{"galois","polgalois","(x)","(x)"},
252
{"galoisapply","nfgaloisapply","(nf,aut,x)","(nf,aut,x)"},
253
{"galoisconj","nfgaloisconj","(nf)","(nf)"},
254
{"galoisconj1","nfgaloisconj","(nf)","(nf,2)"},
255
{"galoisconjforce","nfgaloisconj","","(nf,1)"},
256
{"gamh","gammah","(x)","(x)"},
257
{"gamma",_SAME},
258
{"gauss","matsolve","(a,b)","(a,b)"},
259
{"gaussmodulo","matsolvemod","(M,D,Y)","(M,D,Y)"},
260
{"gaussmodulo2","matsolvemod","(M,D,Y)","(M,D,Y,1)"},
261
{"gcd",_SAME},
262
{"getheap",_SAME},
263
{"getrand",_SAME},
264
{"getstack",_SAME},
265
{"gettime",_SAME},
266
{"globalred","ellglobalred","(x,y)","(x,y)"},
267
{"goto",_REMOV},
268
{"hclassno","qfbhclassno","(x)","(x)"},
269
{"hell","ellheight","(e,x)","(e,x)"},
270
{"hell2","ellheight","(e,x)","(e,x,1)"},
271
{"hermite","mathnf","(x)","(x)"},
272
{"hermite2","mathnf","(x)","(x,1)"},
273
{"hermitehavas",_REMOV},
274
{"hermitemod","mathnfmod","(x,d)","(x,d)"},
275
{"hermitemodid","mathnfmodid","(x,d)","(x,d)"},
276
{"hermiteperm","mathnf","(x)","(x,3)"},
277
{"hess","mathess","(x)","(x)"},
278
{"hilb","hilbert","(x,y)","(x,y)"},
279
{"hilbert","mathilbert","(n)","(n)"},
280
{"hilbp","hilbert","(x,y,p)","(x,y,p)"},
281
{"hvector","vector","(n,X,expr)","(n,X,expr)"},
282
{"hyperu",_SAME},
283
{"i","I","",""},
284
{"idealadd",_SAME},
285
{"idealaddmultone","idealaddtoone","(nf,list)","(nf,list)"},
286
{"idealaddone","idealaddtoone","(nf,x,y)","(nf,x,y)"},
287
{"idealappr",_SAME},
288
{"idealapprfact","idealappr","(nf,x)","(nf,x,1)"},
289
{"idealchinese",_SAME},
290
{"idealcoprime",_SAME},
291
{"idealdiv",_SAME},
292
{"idealdivexact","idealdiv","(nf,x,y)","(nf,x,y,1)"},
293
{"idealfactor",_SAME},
294
{"idealhermite","idealhnf","(nf,x)","(nf,x)"},
295
{"idealhermite2","idealhnf","(nf,x)","(nf,x)"},
296
{"idealintersect",_SAME},
297
{"idealinv",_SAME},
298
{"idealinv2","idealinv","(nf,x)","(nf,x,1)"},
299
{"ideallist",_SAME},
300
{"ideallistarch",_SAME},
301
{"ideallistarchgen","ideallistarch","(nf,list,arch)","(nf,list,arch)"},
302
{"ideallistunit","ideallist","(nf,list)","(nf,list,2)"},
303
{"ideallistunitarch","ideallistarch","","(nf,list,arch)"},
304
{"ideallistunitarchgen","ideallistarch","","(nf,list,arch)"},
305
{"ideallistunitgen","ideallist","","(nf,list,3)"},
306
{"ideallistzstar","ideallist","(nf,bound)","(nf,bound)"},
307
{"ideallistzstargen","ideallist","(nf,bound)","(nf,bound,1)"},
308
{"ideallllred","idealred","(nf,x,vdir)","(nf,x,vdir)"},
309
{"idealmul",_SAME},
310
{"idealmulred","idealmul","(nf,x,y)","(nf,x,y,1)"},
311
{"idealnorm",_SAME},
312
{"idealpow",_SAME},
313
{"idealpowred","idealpow","(nf,x,y)","(nf,x,y,1)"},
314
{"idealtwoelt",_SAME},
315
{"idealtwoelt2","idealtwoelt","(nf,x,a)","(nf,x,a)"},
316
{"idealval",_SAME},
317
{"idmat","matid","(n)","(n)"},
318
{"if",_SAME},
319
{"imag",_SAME},
320
{"image","matimage","(x)","(x)"},
321
{"image2","matimage","(x)","(x,1)"},
322
{"imagecompl","matimagecompl","(x)","(x)"},
323
{"incgam",_SAME},
324
{"incgam1",_REMOV},
325
{"incgam2",_REMOV},
326
{"incgam3",_REMOV},
327
{"incgam4","incgam","(s,x,y)","(s,x,y)"},
328
{"indexrank","matindexrank","(x)","(x)"},
329
{"indsort","vecsort","(x)","(x,,1)"},
330
{"initalg","nfinit","(pol)","(pol)"},
331
{"initalgred","nfinit","(x)","(x,2)"},
332
{"initalgred2","nfinit","(x)","(x,3)"},
333
{"initell","ellinit","(x)","(x)"},
334
{"initzeta",_REMOV},
335
{"integ","intformal","(x,y)","(x,y)"},
336
{"intersect","matintersect","(x,y)","(x,y)"},
337
{"intgen","intnum","(x=a,b,s)","(x=a,b,s,1)"},
338
{"intinf","intnum","(x=a,b,s)","(x=a,b,s,2)"},
339
{"intnum",_SAME},
340
{"intopen","intnum","(x=a,b,s)","(x=a,b,s,3)"},
341
{"inverseimage","matinverseimage","(x,y)","(x,y)"},
342
{"isdiagonal","matisdiagonal","(x)","(x)"},
343
{"isfund","isfundamental","(x)","(x)"},
344
{"isideal","nfisideal","(nf,x)","(nf,x)"},
345
{"isincl","nfisincl","(x,y)","(x,y)"},
346
{"isinclfast","nfisincl","(nf1,nf2)","(nf1,nf2,1)"},
347
{"isirreducible","polisirreducible","(x)","(x)"},
348
{"isisom","nfisisom","(x,y)","(x,y)"},
349
{"isisomfast","nfisisom","(x,y)","(x,y)"},
350
{"isoncurve","ellisoncurve","(e,x)","(e,x)"},
351
{"isprime",_SAME},
352
{"isprincipal","bnfisprincipal","(bnf,x)","(bnf,x,0)"},
353
{"isprincipalforce","bnfisprincipal","(bnf,x)","(bnf,x,2)"},
354
{"isprincipalgen","bnfisprincipal","(bnf,x)","(bnf,x)"},
355
{"isprincipalgenforce","bnfisprincipal","(bnf,x)","(bnf,x,3)"},
356
{"isprincipalray","bnrisprincipal","(bnf,x)","(bnf,x)"},
357
{"isprincipalraygen",_SAME},
358
{"ispsp","ispseudoprime","(x)","(x)"},
359
{"isqrt","sqrtint","(x)","(x)"},
360
{"isset","setisset","(x)","(x)"},
361
{"issqfree","issquarefree","(x)","(x)"},
362
{"issquare",_SAME},
363
{"isunit","bnfisunit","(bnf,x)","(bnf,x)"},
364
{"jacobi","qfjacobi","(x)","(x)"},
365
{"jbesselh","besseljh","(n,x)","(n,x)"},
366
{"jell","ellj","(x)","(x)"},
367
{"karamul",_REMOV},
368
{"kbessel","besselk","(nu,x)","(nu,x)"},
369
{"kbessel2","besselk","(nu,x)","(nu,x)"},
370
{"ker","matker","(x)","(x)"},
371
{"keri","matker","(x)","(x,1)"},
372
{"kerint","matkerint","(x)","(x)"},
373
{"kerint1","matkerint","(x)","(x,1)"},
374
{"kerint2",_REMOV},
375
{"kro","kronecker","(x,y)","(x,y)"},
376
{"label",_REMOV},
377
{"lambdak",_REMOV},
378
{"laplace","serlaplace","(x)","(x)"},
379
{"lcm",_SAME},
380
{"legendre","pollegendre","(n)","(n)"},
381
{"length",_SAME},
382
{"lex",_SAME},
383
{"lexsort","vecsort","(x)","(x,,2)"},
384
{"lift",_SAME},
385
{"lindep",_SAME},
386
{"lindep2","lindep","(x)","(x,1)"},
387
{"lll","qflll","(x)","(x)"},
388
{"lll1",_REMOV},
389
{"lllgen","qflll","(x)","(x,8)"},
390
{"lllgram","qflllgram","(x)","(x)"},
391
{"lllgram1",_REMOV},
392
{"lllgramgen","qflllgram","(x)","(x,8)"},
393
{"lllgramint","qflllgram","(x)","(x,1)"},
394
{"lllgramkerim","qflllgram","(x)","(x,4)"},
395
{"lllgramkerimgen","qflllgram","(x)","(x,5)"},
396
{"lllint","qflll","(x)","(x,1)"},
397
{"lllintpartial","qflll","(x)","(x,2)"},
398
{"lllkerim","qflll","(x)","(x,4)"},
399
{"lllkerimgen","qflll","(x)","(x,5)"},
400
{"lllrat",_REMOV},
401
{"ln","log","(x)","(x)"},
402
{"lngamma",_SAME},
403
{"localred","elllocalred","(e)","(e)"},
404
{"log",_SAME},
405
{"logagm","log","(x)","(x,1)"},
406
{"lseriesell","elllseries","(e,s,N,A)","(e,s,A)"},
407
{"makebigbnf","bnfinit","(sbnf)","(sbnf)"},
408
{"mat","Mat","(x)","(x)"},
409
{"matextract","vecextract","(x,y,z)","(x,y,z)"},
410
{"mathell","ellheightmatrix","(e,x)","(e,x)"},
411
{"matrix",_SAME},
412
{"matrixqz",_SAME},
413
{"matrixqz2","matrixqz","(x,p)","(x,-1)"},
414
{"matrixqz3","matrixqz","(x,p)","(x,-2)"},
415
{"matsize",_SAME},
416
{"max",_SAME},
417
{"min",_SAME},
418
{"minideal","idealmin","(nf,ix,vdir)","(nf,ix,vdir)"},
419
{"minim","qfminim","(x,bound,maxnum)","(x,bound,maxnum)"},
420
{"minim2","qfminim","(x,bound)","(x,bound,,1)"},
421
{"mod","Mod","(x,y)","(x,y)"},
422
{"modp","Mod","(x,y,p)","(x,y)"},
423
{"modreverse",_SAME},
424
{"modulargcd","gcd","(x,y)","(x,y,1)"},
425
{"mu","moebius","(n)","(n)"},
426
{"newtonpoly",_SAME},
427
{"nextprime",_SAME},
428
{"nfdetint",_SAME},
429
{"nfdiv","nfeltdiv","(nf,a,b)","(nf,a,b)"},
430
{"nfdiveuc","nfeltdiveuc","(nf,a,b)","(nf,a,b)"},
431
{"nfdivres","nfeltdivrem","(nf,a,b)","(nf,a,b)"},
432
{"nfhermite","nfhnf","(nf,x)","(nf,x)"},
433
{"nfhermitemod","nfhnfmod","(nf,x,detx)","(nf,x,detx)"},
434
{"nfmod","nfeltmod","(nf,a,b)","(nf,a,b)"},
435
{"nfmul","nfeltmul","(nf,a,b)","(nf,a,b)"},
436
{"nfpow","nfeltpow","(nf,a,k)","(nf,a,k)"},
437
{"nfreduce","nfeltreduce","(nf,a,id)","(nf,a,id)"},
438
{"nfsmith","nfsnf","(nf,x)","(nf,x)"},
439
{"nfval","nfeltval","(nf,a,pr)","(nf,a,pr)"},
440
{"norm",_SAME},
441
{"norml2",_SAME},
442
{"nucomp","qfbnucomp","(x,y,l)","(x,y,l)"},
443
{"numdiv",_SAME},
444
{"numer","numerator","(x)","(x)"},
445
{"nupow","qfbnupow","(x,n)","(x,n)"},
446
{"o","O","(x)","(x)"},
447
{"omega",_SAME},
448
{"ordell","ellordinate","(e,x)","(e,x)"},
449
{"order","znorder","(x)","(x)"},
450
{"orderell","ellorder","(e,x)","(e,x)"},
451
{"ordred","polredord","(x)","(x)"},
452
{"padicprec",_SAME},
453
{"pascal","matpascal","(n)","(n)"},
454
{"perf","qfperfection","(a)","(a)"},
455
{"permutation","numtoperm","(n,k)","(n,k)"},
456
{"permutation2num","permtonum","(vect)","(vect)"},
457
{"pf","qfbprimeform","(x,p)","(x,p)"},
458
{"phi","eulerphi","(x)","(x)"},
459
{"pi","Pi","",""},
460
{"pnqn","contfracpnqn","(x)","(x)"},
461
{"pointell","ellztopoint","(e,z)","(e,z)"},
462
{"polint","polinterpolate","(xa,ya,x)","(xa,ya,p)"},
463
{"polred",_SAME},
464
{"polred2","polred","(x)","(x,2)"},
465
{"polredabs",_SAME},
466
{"polredabs2","polredabs","(x)","(x,1)"},
467
{"polredabsall","polredabs","(x)","(x,4)"},
468
{"polredabsfast","polredabs","(x)","(x,8)"},
469
{"polredabsnored","polredabs","(x)","(x,2)"},
470
{"polsym",_SAME},
471
{"polvar","variable","(x)","(x)"},
472
{"poly","Pol","(x,v)","(x,v)"},
473
{"polylog",_SAME},
474
{"polylogd","polylog","(m,x)","(m,x,1)"},
475
{"polylogdold","polylog","(m,x)","(m,x,2)"},
476
{"polylogp","polylog","(m,x)","(m,x,3)"},
477
{"polyrev","Polrev","(x,v)","(x,v)"},
478
{"polzag","polzagier","(n,m)","(n,m)"},
479
{"powell","ellmul","(e,x,n)","(e,x,n)"},
480
{"powrealraw","qfbpowraw","(x,n)","(x,n)"},
481
{"prec","precision","(x,n)","(x,n)"},
482
{"precision",_SAME},
483
{"prime",_SAME},
484
{"primedec","idealprimedec","(nf,p)","(nf,p)"},
485
{"primes",_SAME},
486
{"primroot","znprimroot","(n)","(n)"},
487
{"principalideal",_REMOV},
488
{"principalidele",_REMOV},
489
{"prod","prod","(x,X=a,b,expr)","(X=a,b,expr,x)"},
490
{"prodeuler",_SAME},
491
{"prodinf",_SAME},
492
{"prodinf1","prodinf","(X=a,expr)","(X=a,expr,1)"},
493
{"psi",_SAME},
494
{"qfi","Qfb","(a,b,c)","(a,b,c)"},
495
{"qfr","Qfb","(a,b,c,d)","(a,b,c,d)"},
496
{"quaddisc",_SAME},
497
{"quadgen",_SAME},
498
{"quadpoly",_SAME},
499
{"random",_SAME},
500
{"rank","matrank","(x)","(x)"},
501
{"rayclassno","bnrclassno","(bnf,x)","(bnf,x)"},
502
{"rayclassnolist","bnrclassnolist","(bnf,liste)","(bnf,liste)"},
503
{"real",_SAME},
504
{"recip","polrecip","(x)","(x)"},
505
{"redimag","qfbred","(x)","(x)"},
506
{"redreal","qfbred","(x)","(x)"},
507
{"redrealnod","qfbred","(x,d)","(x,2,,d)"},
508
{"reduceddisc","poldiscreduced","(f)","(f)"},
509
{"regula","quadregulator","(x)","(x)"},
510
{"reorder",_REMOV},
511
{"resultant","polresultant","(x,y)","(x,y)"},
512
{"resultant2","polresultant","(x,y)","(x,y,1)"},
513
{"reverse","serreverse","(x)","(x)"},
514
{"rhoreal","qfbred","(x)","(x,1)"},
515
{"rhorealnod","qfbred","(x,d)","(x,3,,d)"},
516
{"rndtoi","round","(x)","(x,&e)"},
517
{"rnfbasis",_SAME},
518
{"rnfdiscf","rnfdisc","(nf,pol)","(nf,pol)"},
519
{"rnfequation",_SAME},
520
{"rnfequation2","rnfequation","(nf,pol)","(nf,pol,1)"},
521
{"rnfhermitebasis","rnfhnfbasis","(bnf,order)","(bnf,order)"},
522
{"rnfisfree",_SAME},
523
{"rnflllgram",_SAME},
524
{"rnfpolred",_SAME},
525
{"rnfpseudobasis",_SAME},
526
{"rnfsteinitz",_SAME},
527
{"rootmod","polrootsmod","(x,p)","(x,p)"},
528
{"rootmod2","polrootsmod","(x,p)","(x,p)"},
529
{"rootpadic","polrootspadic","(x,p,r)","(x,p,r)"},
530
{"roots","polroots","(x)","(x)"},
531
{"rootsof1","nfrootsof1","(nf)","(nf)"},
532
{"rootsold",_REMOV},
533
{"round",_SAME},
534
{"rounderror","round","(x)","(x,&e)"},
535
{"series","Ser","(x,v)","(x,v)"},
536
{"set","Set","(x)","(x)"},
537
{"setintersect",_SAME},
538
{"setminus",_SAME},
539
{"setrand",_SAME},
540
{"setsearch",_SAME},
541
{"setunion",_SAME},
542
{"shift",_SAME},
543
{"shiftmul",_SAME},
544
{"sigma",_SAME},
545
{"sigmak","sigma","(k,x)","(x,k)"},
546
{"sign",_SAME},
547
{"signat","qfsign","(x)","(x)"},
548
{"signunit","bnfsignunit","(bnf)","(bnf)"},
549
{"simplefactmod","factormod","(x,p)","(x,p,1)"},
550
{"simplify",_SAME},
551
{"sin",_SAME},
552
{"sinh",_SAME},
553
{"size","sizedigit","(x)","(x)"},
554
{"smallbasis","nfbasis","(x)","(x,1)"},
555
{"smallbuchinit",_REMOV},
556
{"smalldiscf","nfdisc","(x)","(x,1)"},
557
{"smallfact","factor","(x)","(x,0)"},
558
{"smallinitell","ellinit","(x)","(x,1)"},
559
{"smallpolred","polred","(x)","(x,1)"},
560
{"smallpolred2","polred","(x)","(x,3)"},
561
{"smith","matsnf","(x)","(x)"},
562
{"smith2","matsnf","(x)","(x,1)"},
563
{"smithclean","matsnf","(x)","(x,4)"},
564
{"smithpol","matsnf","(x)","(x,2)"},
565
{"solve",_SAME},
566
{"sort","vecsort","(x)","(x)"},
567
{"sqr",_SAME},
568
{"sqred","qfgaussred","(x)","(x)"},
569
{"sqrt",_SAME},
570
{"srgcd","gcd","(x,y)","(x,y,2)"},
571
{"sturm","polsturm","(x)","(x)"},
572
{"sturmpart","polsturm","(x,a,b)","(x,a,b)"},
573
{"subcyclo","polsubcyclo","(p,d)","(p,d)"},
574
{"subell","ellsub","(e,a,b)","(e,a,b)"},
575
{"subst",_SAME},
576
{"sum","sum","(x,X=a,b,expr)","(X=a,b,expr,x)"},
577
{"sumalt",_SAME},
578
{"sumalt2","sumalt","(X=a,expr)","(X=a,expr,1)"},
579
{"suminf",_SAME},
580
{"sumpos",_SAME},
581
{"sumpos2","sumpos","(X=a,expr)","(X=a,expr,1)"},
582
{"supplement","matsupplement","(x)","(x)"},
583
{"sylvestermatrix","polsylvestermatrix","(x,y)","(x,y)"},
584
{"system",_SAME},
585
{"tan",_SAME},
586
{"tanh",_SAME},
587
{"taniyama","elltaniyama","(e)","(e)"},
588
{"taylor",_SAME},
589
{"tchebi","polchebyshev","(n)","(n)"},
590
{"teich","teichmuller","(x)","(x)"},
591
{"theta",_SAME},
592
{"thetanullk",_SAME},
593
{"threetotwo",_REMOV},
594
{"threetotwo2",_REMOV},
595
{"torsell","elltors","(e)","(e)"},
596
{"trace",_SAME},
597
{"trans","mattranspose","(x)","(x)"},
598
{"trunc","truncate","(x)","(x)"},
599
{"tschirnhaus","poltschirnhaus","(x)","(x)"},
600
{"twototwo",_REMOV},
601
{"unit","quadunit","(x)","(x)"},
602
{"until",_SAME},
603
{"valuation",_SAME},
604
{"vec","Vec","(x)","(x)"},
605
{"vecindexsort","vecsort","(x)","(x,,1)"},
606
{"veclexsort","vecsort","(x)","(x,,2)"},
607
{"vecmax",_SAME},
608
{"vecmin",_SAME},
609
{"vecsort",_SAME},
610
{"vector",_SAME},
611
{"vvector","vectorv","(n,X,expr)","(n,X,expr)"},
612
{"weipell","ellwp","(e)","(e)"},
613
{"wf","weber","(x)","(x)"},
614
{"wf2","weber","(x)","(x,2)"},
615
{"while",_SAME},
616
{"zell","ellpointtoz","(e,P)","(e,P)"},
617
{"zeta",_SAME},
618
{"zetak","lfun","(nfz,s)","(L,s)"},
619
{"zideallog","ideallog","(nf,x,bid)","(nf,x,bid)"},
620
{"zidealstar","idealstar","(nf,I)","(nf,I)"},
621
{"zidealstarinit","idealstar","(nf,id)","(nf,id,1)"},
622
{"zidealstarinitgen","idealstar","(nf,id)","(nf,id,2)"},
623
{"znstar",_SAME},
624
{"allocatemem",_SAME},
625
{"box","plotbox","(x,a)","(x,a)"},
626
{"color","plotcolor","(w,c)","(w,c)"},
627
{"cursor","plotcursor","(w)","(w)"},
628
{"default",_SAME},
629
{"draw","plotdraw","(list)","(list)"},
630
{"plotinit","plotinit","(w,x,y)","(w,x,y)"},
631
{"kill",_SAME},
632
{"plotkill","plotkill","(w)","(w)"},
633
{"line","plotlines","(w,x2,y2)","(w,x2,y2)"},
634
{"lines","plotlines","(w,x2,y2)","(w,x2,y2)"},
635
{"move","plotmove","(w,x,y)","(w,x,y)"},
636
{"plot",_SAME},
637
{"ploth",_SAME},
638
{"ploth2","ploth","(X=a,b,expr)","(X=a,b,expr,1)"},
639
{"plothmult","ploth","(X=a,b,expr)","(X=a,b,expr)"},
640
{"plothraw",_SAME},
641
{"point","plotpoints","(w,x,y)","(w,x,y)"},
642
{"points","plotpoints","(w,x,y)","(w,x,y)"},
643
{"psdraw","psdraw","(list)","(list)"},
644
{"psploth","psploth","(X=a,b,expr)","(X=a,b,expr)"},
645
{"postploth2","psploth","(X=a,b,expr)","(X=a,b,expr,1)"},
646
{"psplothraw","psplothraw","(listx,listy)","(listx,listy)"},
647
{"pprint",_REMOV},
648
{"pprint1",_REMOV},
649
{"print",_SAME},
650
{"print1",_SAME},
651
{"rbox","plotrbox","(w,dx,dy)","(w,dx,dy)"},
652
{"read","input","(x)","(x)"},
653
{"rline","plotrline","(w,dx,dy)","(w,dx,dy)"},
654
{"rlines","plotrlines","(w,dx,dy)","(w,dx,dy,1)"},
655
{"rmove","plotrmove","(w,dx,dy)","(w,dx,dy)"},
656
{"rpoint","plotrpoint","(w,dx,dy)","(w,dx,dy)"},
657
{"rpoints","plotrpoints","(w,dx,dy)","(w,dx,dy)"},
658
{"scale","plotscale","(w,x1,x2,y1,y2)","(w,x1,x2,y1,y2)"},
659
{"setprecision","default","(n)","(realprecision,n)"},
660
{"setserieslength","default","(n)","(seriesprecision,n)"},
661
{"settype","type","(x,t)","(x,t)"},
662
{"string","plotstring","(w,x)","(w,x)"},
663
{"texprint","printtex","(x)","(x)"},
664
{"type",_SAME},
665
/* not in 1.39.15 */
666
{"intfouriercos",_REMOV},
667
{"intfouriersin",_REMOV},
668
{"intfourierexp",_REMOV},
669
{"intlaplaceinv",_REMOV},
670
{"intmellininv",_REMOV},
671
{"intmellininvshort",_REMOV},
672
{"zetakinit","lfuninit","(T)","(T,sdom)"},
673
{NULL,_SAME}
674
};
675
676