Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
*** Warning: new stack size = 100000000 (95.367 Mbytes). contains nfabs: 1 [[x^4 + x^3 + x^2 + x + 1, [1], [125, 5], 1, [5], [], [[1, x, x^2, x^3], [1, 1, 1, 1]], [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], 1, [y, [1, 0], 1, 1, [Mat(1), Mat(1), Mat(16), Mat(1), 1, Mat(1), [1, 0], []], [0.E-57], [ 1], Mat(1), Mat(1)], [x^4 + x^3 + x^2 + x + 1, 0, 0, y, x^4 + x^3 + x^2 + x + 1], [0, [[1; 0; 0; 0], Mat(1), 1, Vecsmall([1])]]], [x^2, -x^3 - x^2 - x - 1, x^3], Mod(3, y), Vecsmall([0]), [[[3, [3]~, 1, 1, 1], [5, [5]~, 1, 1, 1] ], Vecsmall([3, 1])], 0, [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0 , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0; 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1 , 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, -1, 0, 0, 0 , 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0 , 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0 , 0], [0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, -1, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ; 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0 , 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 , 0, -1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1], [0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, -1, 0 , 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0 , 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0 , 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 3; 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0; 0 , 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, -3, 0, 3; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3, 0, 0; 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, -1, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0; 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0 , 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, -3; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, -3; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3; 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -1, 0, 0, 1 , 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0 , 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, -3, 3, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 3, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 3; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0; 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, -1, 0, 1, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0; 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0 , -1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3; 1 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0 , -3, 0, 3, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 3, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 3; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3, 0, 0; 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, -1 , 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 3, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 3, -3, 0, 0, 0, 0, 0, 0; 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 3, 0, 0, -3; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, -3; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3; 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, -1, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0; 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, -3, 3, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, -3, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 3, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 3; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0; 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 , 0], [0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0 , 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0 , 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3; 1, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0 , 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 3, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 3, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 3, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0 ; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 3; 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, -3, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3, 0, 0; 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0 , 0, 0, 0, -3, 0, 3, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 3, -3, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, -3; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, -3; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3; 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0 , -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0 , 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 3, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 3, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, -3, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3, 0, 0, 0, 0 , 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, -3, 0, 3, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 3; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0; 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, -1 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0]], 0, [16, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] Suite: all Suite: get degree: 1 center: 1 splitting: 1 automorphism: 1 b: 1 trivial hasse invariants: 1 charac: 1 dim: 1 absdim: 1 basis: 1 invbasis: 1 basis*invbasis: 1 iscyclic: 1 radical: 1 Suite: operations radical: 1 addition: 1 negation: 1 soustraction: 1 multiplication: 1 non-commutativity: 0 left division: 1 right division: 1 noncommutative left division: 1 noncommutative right division: 1 division by non-invertible: error("impossible inverse in algdivl: [Mod(Mod(- 1, i^2 + 1)*s, s^2 + 2), Mod(Mod(i - 1, i^2 + 1), s^2 + 2)]~.") nilpotent: 1 square: 1 square j: 1 inverse: 1 powers: 1 negative powers: 1 multiplication table j: 1 multiplication table: 1 characteristic polynomial: 1 characteristic polynomial j: 1 trace zero: 1 trace commutator: 1 trace: 1 norm zero: 1 norm one: 1 norm j: 1 norm is multiplicative a*b: 1 norm is multiplicative b*a: 1 poleval: 1 poleval b: 1 Suite: tensor product of cyclic algebras radical 1: 1 radical 2: 1 radical 3: 1 tensor of degree 2 and 3 no mo: 1 Suite: Grunwald-Wang A quadratic over Q, 2 large inert, imaginary: 1 A quartic over Q, 2 large inert, imaginary: error("sorry, nfgrunwaldwang for nonprime degree is not yet implemented.") A : degree 4 over Q(i), local degrees [4,1,1]: 1 A degree 3 over Q(j), local degrees [3,3] larger primes: 1 A : degree 3 over Q(sqrt(5)), local degrees [3,3] [0,0], larger primes: 1 A : degree 5 over Q(sqrt(7)), local degrees [5,5,5,5,5,5,5] [0,0]: 1 A : degree 9 over Q(zeta_9), local degrees [9,9,9,9]: 1 A degree 2 over totally real sextic, local degrees [2,2] [2,2,2,2,2,2], larg er primes: 1 A degree 2 over totally real sextic, local degrees [] [2,2,2,2,2,2]: 1 Suite: more operations construct algebra: [[x^3 - 21*x + 7, [1], [49, 1], 27, [7], [], [[1, x + 1, x^2 - x - 2], [1, 1/3, Mat(1/9)]], [1, -1, 1; 0, 1, 1; 0, 0, 1], 27, [y, [1, 0], 1, 1, [Mat(1), Mat(1), Mat(16), Mat(1), 1, Mat(1), [1, 0], []], [0.E-57 ], [1], Mat(1), Mat(1)], [x^3 - 21*x + 7, 0, 0, y, x^3 - 21*x + 7], [[x^3 - 21*x + 7, [3, 0], 49, 27, [[1, -1.2469796037174670610500097680084796213, 1.8 019377358048382524722046390148901023; 1, 0.445041867912628808577805128993589 51893, -1.2469796037174670610500097680084796213; 1, 1.8019377358048382524722 046390148901023, 0.44504186791262880857780512899358951893], [1, -1.246979603 7174670610500097680084796213, 1.8019377358048382524722046390148901023; 1, 0. 44504186791262880857780512899358951893, -1.246979603717467061050009768008479 6213; 1, 1.8019377358048382524722046390148901023, 0.445041867912628808577805 12899358951893], [16, -20, 29; 16, 7, -20; 16, 29, 7], [3, 1, 1; 1, 5, -2; 1 , -2, 5], [7, 0, 5; 0, 7, 5; 0, 0, 1], [3, -1, -1; -1, 2, 1; -1, 1, 2], [7, [2, 1, -1; 1, 3, 1; 0, 1, 2]], [7]~], [-4.7409388111524011831500293040254388 638, 0.33512560373788642573341538698076855680, 4.405813207414514757416613917 0446703070], [9, 3*x + 3, x^2 - x - 11], [1, -1, 10; 0, 3, 3; 0, 0, 9], [1, 0, 0, 0, 1, -1, 0, -1, 2; 0, 1, 0, 1, 1, 1, 0, 1, -1; 0, 0, 1, 0, 1, 0, 1, 0 , 0]], [[1; 0; 0], Mat(1), 1, Vecsmall([1])]]], [-1/3*x^2 - 2/3*x + 14/3, 1/ 3*x^2 - 1/3*x - 14/3], Mod(-6, y), Vecsmall([0]), [[[2, [2]~, 1, 1, 1], [3, [3]~, 1, 1, 1], [7, [7]~, 1, 1, 1]], Vecsmall([1, 2, 0])], 0, [1, 0, 0, 0, 0 , 1/7, 0, 2/7, 6/7; 0, 1, 0, 0, 0, 1/7, 0, 1/7, 6/7; 0, 0, 1, 0, 0, 3/7, 0, 0, 4/7; 0, 0, 0, 1, 0, 5/7, 0, 2/7, 3/7; 0, 0, 0, 0, 1, 5/7, 0, 1/7, 3/7; 0, 0, 0, 0, 0, 1/7, 0, 0, 2/7; 0, 0, 0, 0, 0, 0, 1, 2/7, 5/7; 0, 0, 0, 0, 0, 0 , 0, 1/7, 5/7; 0, 0, 0, 0, 0, 0, 0, 0, 1/7], [1, 0, 0, 0, 0, -1, 0, -2, 6; 0 , 1, 0, 0, 0, -1, 0, -1, 1; 0, 0, 1, 0, 0, -3, 0, 0, 2; 0, 0, 0, 1, 0, -5, 0 , -2, 17; 0, 0, 0, 0, 1, -5, 0, -1, 12; 0, 0, 0, 0, 0, 7, 0, 0, -14; 0, 0, 0 , 0, 0, 0, 1, -2, 5; 0, 0, 0, 0, 0, 0, 0, 7, -35; 0, 0, 0, 0, 0, 0, 0, 0, 7] , [[1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0 , 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 1, -1, 1, 1, 1, 6, 2, 4; 1, 1, 1, 1, 1, 2, 1, 1, 3; 0, 1, 0, 3, 3, 4, 2, 2, 4; 0, 0, 0, 6, 5, 7, 17, 7, 14; 0, 0, 0, 4, 4, 5, 12 , 5, 10; 0, 0, 0, -7, -7, -9, -14, -7, -14; 0, 0, 0, 0, 0, 0, 5, 1, 2; 0, 0, 0, 0, 0, 0, -35, -9, -21; 0, 0, 0, 0, 0, 0, 7, 2, 5], [0, -1, 2, 0, -1, 0, -4, -2, -5; 0, 1, -1, 0, -1, -1, 0, 0, 0; 1, 0, 0, 0, -3, -2, -2, -1, -3; 0, 0, 0, 0, -4, -3, -15, -7, -21; 0, 0, 0, 1, -4, -2, -11, -5, -15; 0, 0, 0, 0 , 7, 5, 14, 7, 21; 0, 0, 0, 0, 0, 0, -2, -1, -3; 0, 0, 0, 0, 0, 0, 28, 12, 3 5; 0, 0, 0, 0, 0, 0, -7, -3, -9], [0, 0, -1, 0, -2, -1, -6, -2, -4; 0, 0, -1 , 0, -1, -1, 0, -1, -5; 0, 0, -3, 0, 0, -1, 0, 0, -2; 1, 0, -5, 0, -2, -1, 0 , 0, 2; 0, 1, -5, 0, -1, -1, 0, 0, 1; 0, 0, 7, 0, 0, 1, 0, 0, 0; 0, 0, 0, 1, -2, 0, 0, 0, 1; 0, 0, 0, 0, 7, 0, 0, 1, -7; 0, 0, 0, 0, 0, 1, 0, 0, 2], [0, -1, 0, -4, -4, -5, 0, -1, 0; 0, -1, 0, 0, 0, 0, 0, -1, -4; 0, -3, 0, -2, -2 , -3, -6, -3, -8; 0, -4, -1, -15, -15, -20, 0, -7, -12; 1, -4, 1, -11, -11, -14, 0, -5, -8; 0, 7, 0, 14, 14, 19, 0, 7, 14; 0, 0, 0, -2, -3, -3, 0, -1, - 1; 0, 0, 0, 28, 28, 35, 0, 12, 14; 0, 0, 0, -7, -7, -9, 0, -3, -4], [0, -1, 0, -3, -4, -4, -6, -3, -5; 0, 0, -1, 0, -1, -1, 1, -1, -5; 0, -2, -2, -1, -2 , -3, -4, -2, -7; 0, -3, -4, -10, -11, -14, -4, -7, -14; 0, -2, -3, -7, -8, -10, -3, -5, -10; 1, 5, 5, 9, 10, 14, 4, 7, 17; 0, 0, 0, -1, -3, -2, 0, -1, -1; 0, 0, 0, 21, 21, 23, 7, 13, 16; 0, 0, 0, -5, -4, -5, -2, -3, -4], [0, -2 , 6, -6, 0, -2, 0, -2, 0; 0, -1, 1, 0, -6, -4, 0, -1, -2; 0, 0, 2, 0, 0, 0, 0, 0, 2; 0, -2, 17, 0, 0, 7, -6, -2, 8; 0, -1, 12, 0, 0, 5, 0, -1, 6; 0, 0, -14, 0, 0, -6, 0, 0, -14; 1, -2, 5, 0, 0, 2, 0, 0, 2; 0, 7, -35, 0, 0, -14, 0, 1, -14; 0, 0, 7, 0, 0, 3, 0, 0, 4], [0, 0, 1, -3, -1, -2, 0, -1, 0; 0, 0, 0, 1, -1, 0, 1, 0, -1; 0, 0, 0, 1, 1, 1, 2, 1, 2; 0, 1, 3, -1, -2, 0, 5, 1, 8; 0, 1, 2, -1, -1, 0, 6, 1, 6; 0, -1, -2, 1, 1, 0, -8, -2, -10; 0, 0, 1, 0 , -1, 0, 1, 0, 1; 1, -2, -9, 4, 6, 1, -5, 1, -9; 0, 1, 2, -1, -1, 0, 1, 0, 3 ], [0, 1, 3, -10, -2, -6, 2, -3, 0; 0, 1, 0, 4, -1, 2, 6, 2, 3; 0, 1, 1, 6, 4, 6, 10, 5, 10; 0, 7, 9, -1, -1, 4, 18, 4, 22; 0, 6, 6, -1, 0, 3, 22, 4, 17 ; 0, -7, -7, 0, 0, -4, -28, -7, -28; 0, 1, 2, -1, -1, 0, 4, 0, 2; 0, -14, -2 1, 14, 7, 0, -14, 3, -21; 1, 5, 5, -3, -1, 1, 2, 0, 8]], 0, [9, 3, 3, 0, 0, 3, 0, 3, 12]] norm(u): 1 norm(t): 1 trace(u): 1 trace(t): 1 u+t: 1 u*t: 1 u^3: 1 w^-1 L: 1 w^-1 R: 1 w^-1*u: [Mod(0, x^3 - 21*x + 7), Mod(Mod(1, y), x^3 - 21*x + 7), Mod(0, x^3 - 21*x + 7)]~ u*w^-1: [Mod(0, x^3 - 21*x + 7), Mod(Mod(1, y), x^3 - 21*x + 7), Mod(0, x^3 - 21*x + 7)]~ charpol(w): Y^3 - 21*Y^2 + 1179*Y + 9447301/28 eval charpol: 1 trace(w): 1 norm(w): 1 dim: 1 absdim: 1 iscommutative: 1 issemisimple: 1 issimple: 1 algleftmultable w+ww: 1 algleftmultable w*ww: 1 alg(basis(w)): 1 alg(basis(ww)): 1 basis(w)+ww: 1 basis(w)-ww: 1 w+basis(ww): 1 w-basis(ww): 1 basis(w)*ww: 1 w*basis(ww): 1 basis(w)^2: 1 basis(ww)^2: 1 basis(w)\ww: 1 w\basis(ww): 1 basis(ww)\w: 1 wwbasis(w): 1 basis(w)^-1: 1 basis(ww)^-1: 1 basis(w)/ww: 1 w/basis(ww): 1 basis(ww)/w: 1 ww/basis(w): 1 trace(basis(w)): 1 trace(basis(ww)): 1 alg(basis(w)) 2: 1 alg(basis(ww)) 2: 1 basis(w)+ww 2: 1 basis(w)-ww 2: 1 w+basis(ww) 2: 1 w-basis(ww) 2: 1 basis(w)*ww 2: 1 w*basis(ww) 2: 1 basis(w)^2 2: 1 basis(ww)^2 2: 1 basis(w)ww 2: 1 wbasis(ww) 2: 1 basis(ww)w 2: 1 wwbasis(w) 2: 1 basis(w)^-1 2: 1 basis(ww)^-1 2: 1 basis(w)/ww 2: 1 w/basis(ww) 2: 1 basis(ww)/w 2: 1 ww/basis(w) 2: 1 trace(basis(w)) 2: 1 trace(basis(ww)) 2: 1 alg(basis(w)) 3: 1 alg(basis(ww)) 3: 1 basis(w)+ww 3: 1 basis(w)-ww 3: 1 w+basis(ww) 3: 1 w-basis(ww) 3: 1 basis(w)*ww 3: 1 w*basis(ww) 3: 1 basis(w)^2 3: 1 basis(ww)^2 3: 1 basis(w)ww 3: 1 wbasis(ww) 3: 1 basis(ww)w 3: 1 wwbasis(w) 3: 1 basis(w)^-1 3: 1 basis(ww)^-1 3: 1 basis(w)/ww 3: 1 w/basis(ww) 3: 1 basis(ww)/w 3: 1 ww/basis(w) 3: 1 trace(basis(w)) 3: 1 trace(basis(ww)) 3: 1 radical: 1 iscommutative cyc 3: 1 issemisimple cyc 3: 1 issimple cyc 3: 1 algleftmultable/Q w+ww: 1 algleftmultable/Q w*ww: 1 alg(basis(w))/Q: 1 alg(basis(ww))/Q: 1 basis(w)+ww/Q: 1 basis(w)-ww/Q: 1 w+basis(ww)/Q: 1 w-basis(ww)/Q: 1 basis(w)*ww/Q: 1 w*basis(ww)/Q: 1 basis(w)^2/Q: 1 basis(ww)^2/Q: 1 basis(w)ww/Q: 1 wbasis(ww)/Q: 1 basis(ww)w/Q: 1 wwbasis(w)/Q: 1 basis(w)^-1/Q: 1 basis(ww)^-1/Q: 1 basis(w)/ww/Q: 1 w/basis(ww)/Q: 1 basis(ww)/w/Q: 1 ww/basis(w)/Q: 1 trace(basis(w))/Q: 1 trace(basis(ww))/Q: 1 radical/Q: 1 iscommutative /Q: 1 issemisimple /Q: 1 issimple /Q: 1 Suite: table algebra algisassociative 0.0: 1 algisassociative 0.1: error("incorrect type in algisassociative (mult. table ) (t_VEC).") algisassociative 0.2: 1 algisassociative 0.3: error("incorrect type in algisassociative (mult. table ) (t_POL).") construction 0: [0, 0, 0, 0, 0, 0, [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [[1, 0, 0; 0, 1, 0; 0, 0, 1], [0, 0, 0; 1, 0, 1; 0, 0, 0], [0, 0, 0; 0, 0, 0; 1, 0, 1]], 0, [3, 0, 1]] iscyclic 0: 1 dim 0: 1 dim 0b: 1 char 0: 1 a+b 0: 1 a-b 0: 1 a*b 0: 1 b*a 0: 1 a^2 0: 1 b^2 0: 1 e^691691 0: 1 d^101 0: 1 multable(a) 0: 1 multable(b) 0: 1 divl(d,a) 0: 1 divl(d,b) 0: 1 d^-1 0: 1 divr(a,d) 0: 1 divr(b,d) 0: 1 rad(al) 0: 1 ss(al) 0: 1 proj(a) idem 0: 1 idemproj 0: [[0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 0, [1]], [0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 0, [1]]] simple components 0: 1 center al 0: 1 center ss 0: 1 primesubalg ss 0: error("domain error in algprimesubalg: characteristic = 0" ) x^3 - 2*x^2 + x charpol annihil(a) 0: 1 x^3 - x^2 charpol annihil(b) 0: 1 x^3 charpol annihil(c) 0: 1 x^3 - 4*x^2 + 5*x - 2 charpol annihil(d) 0: 1 x^3 - 3*x^2 + 3*x - 1 charpol annihil(e) 0: 1 random 0: [1, 0, 0]~ algsimpledec 0: 1 alg_decomposition 0: 1 iscommutative 0: 1 issemisimple 0: 1 issimple 0: 1 issimple ss 0: 1 isdivision 0: 1 algisassociative 2: 1 construction 2: [0, 0, 0, 0, 0, 0, [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [[1, 0, 0; 0, 1, 0; 0, 0, 1], [0, 0, 0; 1, 0, 1; 0, 0, 0], [0, 0, 0; 0, 0, 0; 1, 0, 1]], 2, [1, 0, 1]] iscyclic 2: 1 dim 2: 1 char 2: 1 a+b 2: 1 a-b 2: 1 a*b 2: 1 b*a 2: 1 a^2 2: 1 b^2 2: 1 multable(a) 2: 1 multable(b) 2: 1 divl(un,a) 2: 1 divl(un,b) 2: 1 un^-1 2: 1 divr(a,un) 2: 1 divr(b,un) 2: 1 rad(al) 2: 1 ss(al) 2: 1 proj(a) idem 2: 1 idemproj 2: [[0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 2, [1]], [0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 2, [1]]] simple components 2: 1 center al 2: 1 center ss 2: 1 primesubalg ss 2: 1 x^3 + x charpol annihil(a) 2: 1 x^3 + x^2 charpol annihil(b) 2: 1 x^3 charpol annihil(c) 2: 1 random 2: [1, 0, 0]~ algsimpledec 2: 1 alg_decomposition 2: 1 iscommutative 2: 1 issemisimple 2: 1 issimple 2: 1 issimple ss 2: 1 matrix trace 2: 1 matrix norm 2: 1 norm 2: 1 construction 3: [0, 0, 0, 0, 0, 0, [1, 0; 0, 1], [1, 0; 0, 1], [[1, 0; 0, 1] , [0, 0; 1, 0]], 3, [2, 0]] iscyclic 3: 1 dim 3: 1 char 3: 1 a+b 3: 1 a-b 3: 1 a*b 3: 1 b*a 3: 1 a^2 3: 1 b^2 3: 1 a^691691 3: 1 multable(a) 3: 1 multable(b) 3: 1 algdivl(a,b) 3: 1 a^-1 3: 1 algdivr(b,a) 3: 1 rad(al) 3: 1 ss(al) 3: 1 center al 3: 1 center ss 3: 1 primesubalg ss 3: 1 x^2 + x + 1 charpol annihil(a) 3: 1 x^2 charpol annihil(b) 3: 1 random 3: [1, 0]~ algsimpledec 3: 1 alg_decomposition 3: 1 iscommutative 3: 1 issemisimple 3: 1 issemisimple ss 3: 1 issimple 3: 1 issimple ss 3: 1 construction 3c: [0, 0, 0, 0, 0, 0, [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0 , 1, 0; 0, 0, 1], [[1, 0, 0; 0, 1, 0; 0, 0, 1], [0, 0, 0; 1, 0, 0; 0, 1, 0], [0, 0, 0; 0, 0, 0; 1, 0, 0]], 3, [0, 0, 0]] iscyclic 3c: 1 dim 3c: 1 char 3c: 1 a+b 3c: 1 a-b 3c: 1 a*b 3c: 1 b*a 3c: 1 a^2 3c: 1 b^2 3c: 1 a^691691 3c: 1 multable(a) 3c: 1 multable(b) 3c: 1 algdivl(a,b) 3c: 1 a^-1 3c: 1 algdivr(b,a) 3c: 1 rad(al) 3c: 1 ss(al) 3c: 1 center al 3c: 1 center ss 3c: 1 primesubalg ss 3c: 1 x^3 + 2 charpol annihil(a) 3c: 1 x^3 charpol annihil(b) 3c: 1 random 3c: [1, 0, 0]~ algsimpledec 3c: 1 alg_decomposition 3c: 1 iscommutative 3c: 1 issemisimple 3c: 1 issemisimple ss 3c: 1 issimple 3c: 1 issimple ss 3c: 1 construction 2b: [0, 0, 0, 0, 0, 0, [1, 0; 0, 1], [1, 0; 0, 1], [[1, 0; 0, 1 ], [0, 1; 1, 1]], 2, [0, 1]] iscyclic 2b: 1 dim 2b: 1 char 2b: 1 a+b 2b: 1 a-b 2b: 1 a*b 2b: 1 b*a 2b: 1 a^2 2b: 1 b^2 2b: 1 a^691691 2b: 1 multable(a) 2b: 1 multable(b) 2b: 1 divl(a,b) 2b: 1 a^-1 2b: 1 divr(b,a) 2b: 1 rad(al) 2b: 1 center al 2b: 1 primesubalg al 2b: 1 x^2 + x + 1 charpol annihil(a) 2b: 1 x^2 + x + 1 charpol annihil(b) 2b: 1 random 2b: [1, 0]~ algsimpledec 2b: 1 alg_decomposition 2b: 1 iscommutative 2b: 1 issemisimple 2b: 1 issimple 2b: 1 issimple,1 2b: 1 construction 3b: [0, 0, 0, 0, 0, 0, [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [[1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [0, 1, 0, 0; 1, 0, 0, 0; 0, 0, 1, 0; 0, 0 , 0, 2], [0, 0, 0, 2; 0, 0, 0, 2; 1, 2, 0, 0; 0, 0, 0, 0], [0, 0, 2, 0; 0, 0 , 1, 0; 0, 0, 0, 0; 1, 1, 0, 0]], 3, [1, 0, 0, 0]] iscyclic 3b: 1 dim 3b: 1 char 3b: 1 a+b 3b: 1 a-b 3b: 1 a*b 3b: 1 b*a 3b: 1 a^2 3b: 1 b^2 3b: 1 a^691691 3b: 1 b^691691 3b: 1 multable(a) 3b: 1 multable(b) 3b: 1 divl(a,b) 3b: 1 a^-1 3b: 1 divr(b,a) 3b: 1 rad(al) 3b: 1 center al 3b: 1 primesubalg al 3b: 1 x^4 + x^2 + 1 charpol annihil(a) 3b: 1 x^4 + 2*x^3 + x^2 charpol annihil(b) 3b: 1 x^4 charpol annihil(c) 3b: 1 random 3b: [1, 0, 0, 1]~ algsimpledec 3b: 1 alg_decomposition 3b: 1 iscommutative 3b: 1 issemisimple 3b: 1 issimple 3b: 1 construction 2c: [0, 0, 0, 0, 0, 0, [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [[1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [0, 0, 1, 0; 1, 0, 0, 1; 0, 0, 0, 0; 0, 0 , 1, 0], [0, 0, 0, 0; 0, 0, 0, 0; 1, 0, 0, 0; 0, 1, 0, 0], [0, 0, 0, 0; 0, 0 , 0, 0; 0, 0, 1, 0; 1, 0, 0, 1]], 2, [0, 0, 0, 0]] iscyclic 2c: 1 dim 2c: 1 char 2c: 1 a+b 2c: 1 a-b 2c: 1 a*b 2c: 1 b*a 2c: 1 a^2 2c: 1 b^2 2c: 1 a^691691 2c: 1 b^691691 2c: 1 c^691691 2c: 1 multable(a) 2c: 1 multable(b) 2c: 1 divl(c,a) 2c: 1 divl(c,b) 2c: 1 c^-1 2c: 1 divr(a,c) 2c: 1 divr(b,c) 2c: 1 rad(al) 2c: 1 center al 2c: 1 primesubalg al 2c: 1 x^4 charpol annihil(a) 2c: 1 x^4 + x^2 charpol annihil(b) 2c: 1 x^4 + x^2 + 1 charpol annihil(c) 2c: 1 random 2c: [1, 0, 0, 1]~ algsimpledec 2c: 1 alg_decomposition 2c: 1 iscommutative 2c: 1 issemisimple 2c: 1 issimple 2c: 1 construction 5: [0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 5, [1]] iscyclic 5: 1 dim 5: 1 char 5: 1 a+b 5: 1 a-b 5: 1 a*b 5: 1 b*a 5: 1 a^2 5: 1 b^2 5: 1 a^691691 5: 1 multable(a) 5: 1 multable(b) 5: 1 divl(a,b) 5: 1 a^-1 5: 1 divr(a,b) 5: 1 rad(al) 5: 1 center al 5: 1 primesubalg al 5: 1 x + 3 charpol annihil(a) 5: 1 x + 2 charpol annihil(b) 5: 1 random 5: [1]~ algsimpledec 5: 1 alg_decomposition 5: 1 iscommutative 5: 1 issemisimple 5: 1 issimple 5: 1 construction 0b: [0, 0, 0, 0, 0, 0, [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [[1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [0, 0, 1, 0, 0; 1, 0, 0, 1, 0; 0, 0, 0, 0, 0; 0, 0, -1, 0, 0; 0, 1, -1, -1, 1], [0, 0, 0, 0, 0; 0, 0, 0, 0, 0; 1 , 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 0, 0, 0], [0, 0, 0, 0, 0; 0, 0, 0, 0, 0; 0, 0, 1, 0, 0; 1, 0, 0, 1, 0; 0, 0, 0, 0, 0], [0, 0, 0, 0, 0; 0, 0, 0, 0, 0; 0, 0, 0, 0, 0; 0, 0, 0, 0, 0; 1, 1, 0, 0, 1]], 0, [5, 1, 0, 2, 1]] iscyclic 0b: 1 dim 0b: 1 char 0b: 1 a+b 0b: 1 a-b 0b: 1 a*b 0b: 1 b*a 0b: 1 a^2 0b: 1 b^2 0b: 1 a^691691 0b: 1 b^691 0b: 1 multable(a) 0b: 1 multable(b) 0b: 1 divl(b,a) 0b: 1 b^-1 0b: 1 divr(a,b) 0b: 1 rad(al) 0b: 1 idemproj 0b: [[0, 0, 0, 0, 0, 0, [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [[1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [0, 0, 1, 0; 1, 0, 0, 1; 0, 0, 0, 0; 0, 0, - 1, 0], [0, 0, 0, 0; 0, 0, 0, 0; 1, 0, 0, 0; 0, 1, 0, 0], [0, 0, 0, 0; 0, 0, 0, 0; 0, 0, 1, 0; 1, 0, 0, 1]], 0, [4, 0, 0, 2]], [0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 0, [1]]] simple components 0b: 1 mt M2 component 0b: 1 center al 0b: 1 primesubalg al 0b: error("domain error in algprimesubalg: characteristic = 0 ") x^5 - 4*x^4 + 6*x^3 - 4*x^2 + x charpol annihil(a) 0b: 1 x^5 - 6*x^4 + 14*x^3 - 16*x^2 + 9*x - 2 charpol annihil(b) 0b: 1 random 0b: [1, 0, 0, 1, 1]~ algsimpledec 0b: 1 alg_decomposition 0b: 1 subalg M2(Q): 1 iscommutative 0b: 1 issemisimple 0b: 1 issimple 0b: 1 construction 3d: [0, 0, 0, 0, 0, 0, [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [[1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [0, 0, 1, 0, 0; 1, 0, 0, 1, 0; 0, 0, 0, 0, 0; 0, 0, 2, 0, 0; 0, 1, 2, 2, 1], [0, 0, 0, 0, 0; 0, 0, 0, 0, 0; 1, 0 , 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 0, 0, 0], [0, 0, 0, 0, 0; 0, 0, 0, 0, 0; 0, 0, 1, 0, 0; 1, 0, 0, 1, 0; 0, 0, 0, 0, 0], [0, 0, 0, 0, 0; 0, 0, 0, 0, 0; 0, 0, 0, 0, 0; 0, 0, 0, 0, 0; 1, 1, 0, 0, 1]], 3, [2, 1, 0, 2, 1]] iscyclic 3d: 1 dim 3d: 1 char 3d: 1 a+b 3d: 1 a-b 3d: 1 a*b 3d: 1 b*a 3d: 1 a^2 3d: 1 b^2 3d: 1 a^691691 3d: 1 b^691 3d: 1 multable(a) 3d: 1 multable(b) 3d: 1 divl(b,a) 3d: 1 b^-1 3d: 1 divr(a,b) 3d: 1 rad(al) 3d: 1 idemproj 3d: [[0, 0, 0, 0, 0, 0, [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [[1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [0, 0, 1, 0; 1, 0, 0, 1; 0, 0, 0, 0; 0, 0, 2 , 0], [0, 0, 0, 0; 0, 0, 0, 0; 1, 0, 0, 0; 0, 1, 0, 0], [0, 0, 0, 0; 0, 0, 0 , 0; 0, 0, 1, 0; 1, 0, 0, 1]], 3, [1, 0, 0, 2]], [0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 3, [1]]] simple components 3d: 1 mt M2 component 3d: 1 center al 3d: 1 primesubalg al 3d: 1 x^5 + 2*x^4 + 2*x^2 + x charpol annihil(a) 3d: 1 x^5 + 2*x^3 + 2*x^2 + 1 charpol annihil(b) 3d: 1 random 3d: [1, 0, 0, 1, 1]~ algsimpledec 3d: 1 alg_decomposition 3d: 1 subalg M2(F3): 1 iscommutative 3d: 1 issemisimple 3d: 1 issimple 3d: 1 issimple,1 3d: 1 maxorder assoc: 1 natorder assoc: 1 spl(1): 1 spl(i): 1 spl(j): 1 spl(k): 1 spl(basis(1)): 1 spl(basis(i)): 1 spl(basis(j)): 1 spl(basis(k)): 1 spl(a*1): 1 spl(a*i): 1 spl(a*j): 1 spl(a*k): 1 spl(b*1): 1 spl(b*i): 1 spl(b*j): 1 spl(b*k): 1 nattomax 1: 1 nattomax 2: 1 ord*invord=id: 1 spl additive: 1 spl multiplicative: 1 changebasis bug 1: 1 changebasis bug 2: 1 changebasis bug 3: 1 changebasis bug 4: 1 algtableinit segfault bug: 1 center of CSA: 1 radical of CSA: 1 decomposition of CSA: 1 alg_decomposition of CSA: 1 alsimple bug 0 tests for al_CSA: 1 1 algebra: csa getcenter: 1 csa getsplitting: 1 getrelmultable: 1 getsplittingdata: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 hasse invariants: hassei csa: error("sorry, computation of Hasse invariants over table CSA is not yet implemented.") hassef cas: error("sorry, computation of Hasse invariants over table CSA is not yet implemented.") hasse csa: error("sorry, computation of Hasse invariants over table CSA is n ot yet implemented.") csa splitting pol: 1 csa basis: 1 csa invbasis: 1 csa absdim: 1 csa char: 1 csa deg: 1 csa dim: 1 csa absdim: 1 csa type: 1 csa iscommutative: 1 csa issemisimple: 1 elements: [0, Mod(y, y^3 - y + 1), 0, 0]~ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]~ csa add: 1 csa neg: 1 csa neg 2: 1 csa sub: 1 csa mul: 1 csa mul 2: 1 csa sqr: 1 csa sqr 2: 1 csa mt: 1 csa inv: 1 csa inv 2: 1 csa divl: 1 csa pow: 1 csa mul 3: 1 csa mul 4: 1 csa pow 2: 1 csa sub 2: 1 csa sub 3: 1 csa inv 3: 1 csa inv 4: 1 csa inv 5: 1 csa trace: 1 csa trace 2: 1 1 testcharpol 1 1 1 testcharpol2 1 1 1 testnorm 1 1 1 testnorm2 1 1 1 examples from docu 0 [2, 2]~ 0 1 [Mod(Mod(-1/3, y), x^2 + 1), Mod(Mod(2/3, y), x^2 + 1)]~ 0 1 1 [Mod(-2/5*x - 1/5, x^2 + 1), 0]~ [0, 2, -1, -1, 2, 0, 0, 0]~ [Mod(Mod(y, y^2 - 5), x^2 - 2), 1]~ [Mod(Mod(-1/2*y, y^2 - 5)*x + Mod(-1/4*y + 5/4, y^2 - 5), x^2 - 2), Mod(Mod( -3/4*y + 7/4, y^2 - 5), x^2 - 2)]~ [0, 1, 0, 0, 2, -3, 0, 0]~ [[0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 2, [1]], [0, 0, 0, 0, 0, 0, [1 , 0; 0, 1], [1, 0; 0, 1], [[1, 0; 0, 1], [0, 1; 1, 1]], 2, [0, 1]]] [1 0] [0 1] [0 0] [0, 0, 0, 0, 0, 0, [1, 0; 0, 1], [1, 0; 0, 1], [[1, 0; 0, 1], [0, 1; 1, 1]], 2, [0, 1]] [[0, 0, 0, 0, 0, 0, [1, 0; 0, 1], [1, 0; 0, 1], [[1, 0; 0, 1], [0, 1; 1, 1]] , 2, [0, 1]], [1, 0; 0, 0; 0, 1]] 1 0 0 0 0 1 [[[2, [2, 0]~, 1, 2, 1], [3, [3, 0]~, 1, 2, 1]], Vecsmall([0, 1])] 12960000 12960000 12 y^3 - y + 1 2 4 -1/3*x^2 - 4/3*x + 26/3 Mod(5929, y) 13 1 [[[2, [2, 0]~, 1, 2, 1], [19, [-9, 2]~, 1, 1, [-8, 2; 2, -10]]], Vecsmall([0 , 1])] Vecsmall([1, 0]) 1/2 0 1/2 0 2 1 2 1 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 [1, [2, [2, 0]~, 1, 2, 1]] x^2 + Mod(-y + 13, y^2 - 5) [1 0 0 -1] [0 1 0 -1] [0 0 1 -1] [0 0 0 2] [1 0 0 1/2] [0 1 0 1/2] [0 0 1 1/2] [0 0 0 1/2] [[1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [0, -1, 1, 0; 1, 0, 1, 1; 0, 0, 1, 1; 0, 0, -2, -1], [0, -1, -1, -1; 0, -1, 0, -1; 1, -1, 0, 0; 0, 2, 0, 1], [0, -1, 0, -1; 0, 0, 1, 0; 0, -1, 1, 0; 1, 1, -1, 1]] [1/2, -1/2, 0, 0]~ [2, 3, 5, -4]~ [0 -1 1 0] [1 0 1 1] [0 0 1 1] [0 0 -2 -1] [-1 0 0 -1] [-1 0 1 0] [-1 -1 0 -1] [ 2 0 0 1] [-1, -1, 0, 0]~ [Mod(x + 1, x^2 + 1) Mod(x - 1, x^2 + 1)] [Mod(x + 1, x^2 + 1) Mod(-x + 1, x^2 + 1)] [8, -8, 0, 0]~ [0, 1, -1, 0]~ 11 3 [[1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [0, y, 0, 0; 1, 0, 0, 0; 0, 0, 0, y; 0, 0, 1, 0], [0, 0, y^2, 0; 0, 0, 0, -y^2; 1, 0, 0, 0; 0, -1, 0, 0], [0, 0, 0, -5; 0, 0, y^2, 0; 0, -y, 0, 0; 1, 0, 0, 0]] x^2 - y [[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]~, [1, 0; 0, -1; 0, 0; 0, 0; 0, 0; 0, 0 ; 0, 1; 0, 0; 0, 0; 0, 0; 0, 0; 0, 0], [1, Mod(x^2, x^6 - 5), Mod(x^4, x^6 - 5), Mod(x, x^6 - 5), Mod(1/2*x^4 + 1/2*x^3 + 1/2*x + 1/2, x^6 - 5), Mod(1/2 *x^5 + 1/2*x^4 + 1/2*x^2 + 1/2*x, x^6 - 5), Mod(x^2, x^6 - 5), Mod(x^4, x^6 - 5), Mod(x^4 + x^2 + 1, x^6 - 5), 3, Mod(x^2, x^6 - 5), Mod(x^4, x^6 - 5); 0, 0, 0, 0, 0, 0, 1, Mod(x^2, x^6 - 5), Mod(1/10*x^4 + 1/2*x^2 + 1/2, x^6 - 5), Mod(1/2*x^4 - 1/2*x, x^6 - 5), Mod(-1/10*x^3 + 1/2, x^6 - 5), Mod(-1/10* x^5 + 1/2*x^2, x^6 - 5)]] 2 18 18 1 1 1 matrices over algebras [[1, 0, 2, 2, 2, 2, 0, -2]~ [-2, -1, 1, 0, -1, -2, -1, 1]~] [[1, 2, 0, -2, 2, 1, 2, 2]~ [2, -2, -2, 0, -2, 2, -1, 2]~] [[-2, 0, -2, 2, 0, 2, 0, -2]~ [0, 2, -1, 0, -2, -2, -1, -1]~] [[0, 2, 0, -2, -1, 1, 1, -1]~ [0, 2, 0, 2, 0, 1, 0, 1]~] mul alM: [[30, 1, -15, 6, -9, -30, -41, 37]~, [62, -3, -20, 6, -11, -16, -49 , 20]~; [247, 49, -39, 122, -43, 31, -265, 73]~, [168, 74, -22, 68, -91, 48, -136, 32]~] sqr alM: 1 divl alM: 1 divr alM: 1 isinv alM: 1 isinv alM 2: 1 inv alM: 1 inv alM 2: 1 neg alM: 1 sub alM: 1 add alM: 1 algtobasis basistoalg alM 1: 1 algtobasis basistoalg alM 2: 1 algleftmultable add alM: 1 algleftmultable mul alM: 1 algleftmultable sqr alM: 1 algsplitm add alM: 1 algsplitm mul alM: 1 algsplitm sqr alM: 1 algsplitm sqr alM 2: 1 algtrace alM: 1 algtrace alM 2: 1 algtrace prod alM: 1 algnorm alM: 1 algnorm alM 2: 1 algcharpoly alM: 1 algcharpoly alM 2: 1 pow alM: 1 pow alM 2: 1 pow 0 alM: 1 [[Mod(Mod(-1/2*y - 1/2, y^2 - 5)*x + Mod(1/2*y + 1/2, y^2 - 5), x^2 + 1), Mo d(Mod(1/14*y + 3/14, y^2 - 5)*x + Mod(-1/14*y + 3/14, y^2 - 5), x^2 + 1)]~ [ Mod(-2*x + Mod(3/4*y - 17/4, y^2 - 5), x^2 + 1), Mod(Mod(-1/28*y - 3/4, y^2 - 5)*x - 6/7, x^2 + 1)]~] [[Mod(13/2*x + Mod(1/2*y + 4, y^2 - 5), x^2 + 1), Mod(Mod(-1/14*y + 11/7, y^ 2 - 5)*x + Mod(1/7*y + 53/14, y^2 - 5), x^2 + 1)]~ [Mod(Mod(-1/4*y - 3/4, y^ 2 - 5)*x + Mod(-1/2*y + 7/2, y^2 - 5), x^2 + 1), Mod(Mod(-1/14*y + 23/14, y^ 2 - 5)*x + Mod(1/28*y + 43/28, y^2 - 5), x^2 + 1)]~] [[Mod(Mod(-1/2*y - 3/2, y^2 - 5)*x + Mod(-3/2*y - 1/2, y^2 - 5), x^2 + 1), M od(Mod(1/14*y + 3/14, y^2 - 5)*x + Mod(-1/14*y - 11/14, y^2 - 5), x^2 + 1)]~ [Mod(Mod(1/2*y - 1, y^2 - 5)*x + Mod(-3/4*y - 7/4, y^2 - 5), x^2 + 1), Mod( Mod(1/28*y - 43/28, y^2 - 5)*x + Mod(-1/14*y - 22/7, y^2 - 5), x^2 + 1)]~] [[Mod(Mod(y + 5/2, y^2 - 5)*x + Mod(-1/4*y + 5/4, y^2 - 5), x^2 + 1), Mod(Mo d(1/28*y + 1/4, y^2 - 5)*x - 9/14, x^2 + 1)]~ [Mod(Mod(-5/4*y + 9/4, y^2 - 5 )*x + Mod(1/4*y + 3/4, y^2 - 5), x^2 + 1), Mod(Mod(-1/28*y + 25/28, y^2 - 5) *x + Mod(1/28*y + 39/28, y^2 - 5), x^2 + 1)]~] mul scalar alM: 1 [ [2, 1, 0, 2]~ [-1, -1, 2, -1]~] [[2, 1, -1, -2]~ [1, -1, 0, -1]~] [ [-2, 2, 2, 1]~ [-2, -2, 2, 1]~] [[-1, -2, 1, 1]~ [0, 1, 0, -1]~] mul alM t: [[-10, 4, 7, 3]~, [-4, -13, -3, -1]~; [-4, 5, 5, 11]~, [2, -2, 7, 5]~] sqr alM t: 1 divl alM t: 1 divr alM t: 1 isinv alM t: 1 isinv alM t 2: 1 inv alM t: 1 inv alM t 2: 1 neg alM t: 1 sub alM t: 1 add alM t: 1 algleftmultable add alM t: 1 algleftmultable mul alM t: 1 algleftmultable sqr alM t: 1 algtrace alM t: 1 algtrace alM t 2: 1 algtrace prod alM t: 1 algnorm alM t: 1 algnorm alM t 2: 1 algcharpoly alM t: 1 algcharpoly alM t 2: 1 pow alM t: 1 pow alM 2 t: 1 pow 0 alM t: 1 csa al2 al2 contains nfabs: 1 [[x^2 + (-2*y^2 + 2*y)*x + (6*y^2 - 5*y + 5), [292133, -1964*x^5 + 4725*x^4 - 14044*x^3 - 95698*x^2 - 164828*x - 456632, -1406*x^5 + 4870*x^4 - 7674*x^3 - 64939*x^2 - 119188*x + 52103], [[412, 92, 376; 0, 4, 0; 0, 0, 4], [-7, -4 , 2]~], 1, [2, 103], [], [[1, x], [1, 1]], [1, 0; 0, 1], 1, [y^3 - y + 1, [1 , 1], -23, 1, [[1, 0.75487766624669276004950889635852869189, -1.324717957244 7460259609088544780973407; 1, -0.87743883312334638002475444817926434595 + 0. 74486176661974423659317042860439236724*I, 0.66235897862237301298045442723904 867037 + 0.56227951206230124389918214490937306150*I], [1, 0.7548776662466927 6004950889635852869189, -1.3247179572447460259609088544780973407; 1, -0.1325 7706650360214343158401957487197871, 1.2246384906846742568796365721484217319; 1, -1.6223005997430906166179248767836567132, 0.1000794665600717690812722823 2967560887], [16, 12, -21; 16, -2, 20; 16, -26, 2], [3, -1, 0; -1, 1, -3; 0, -3, 2], [23, 16, 10; 0, 1, 0; 0, 0, 1], [7, -2, -3; -2, -6, -9; -3, -9, -2] , [23, [-10, -1, 8; -7, -3, 1; 1, 7, -10]], [23]], [-1.324717957244746025960 9088544780973407, 0.66235897862237301298045442723904867037 + 0.5622795120623 0124389918214490937306150*I], [1, y^2 - 1, y], [1, 0, 1; 0, 0, 1; 0, 1, 0], [1, 0, 0, 0, 0, -1, 0, -1, 1; 0, 1, 0, 1, -1, 0, 0, 0, 1; 0, 0, 1, 0, -1, 0, 1, 0, 0]], [x^6 - 4*x^5 + 15*x^4 + 14*x^3 + 120*x^2 + 36*x + 191, -1406/292 133*x^5 + 4870/292133*x^4 - 7674/292133*x^3 - 64939/292133*x^2 - 119188/2921 33*x + 52103/292133, 0, y^3 - y + 1, x^2 + (-2*y^2 + 2*y)*x + (6*y^2 - 5*y + 5)], [0, [[1, 0, 0; 0, -1, 0; 0, 0, 1; 0, 0, 0; 0, 0, 0; 0, 0, 0], [1, 0, 0 ; 0, -1, 0; 0, 0, 1], 1, Vecsmall([1, 2, 3])]]], [[1, 0, 0, 0; 0, 1, 0, 0; 0 , 0, 1, 0; 0, 0, 0, 1], [0, 0, 1, 0; 1, 0, 0, 1; 0, 0, 0, 0; 0, 0, -1, 0], [ 0, 0, 0, 0; 0, 0, 0, 0; 1, 0, 0, 0; 0, 1, 0, 0], [0, 0, 0, 0; 0, 0, 0, 0; 0, 0, 1, 0; 1, 0, 0, 1]], [[0, 1, -1, -1, -2, 2, 0, 0, -2, 2, 0, 0]~, [1, 0; 0 , 0; 0, 0; 0, 0; 0, 0; 0, 0; 0, 1; 0, 0; 0, 0; 0, 0; 0, 0; 0, 0], [1, Mod(-1 964/292133*x^5 + 4725/292133*x^4 - 14044/292133*x^3 - 95698/292133*x^2 - 164 828/292133*x - 456632/292133, x^6 - 4*x^5 + 15*x^4 + 14*x^3 + 120*x^2 + 36*x + 191), Mod(-1406/292133*x^5 + 4870/292133*x^4 - 7674/292133*x^3 - 64939/29 2133*x^2 - 119188/292133*x + 52103/292133, x^6 - 4*x^5 + 15*x^4 + 14*x^3 + 1 20*x^2 + 36*x + 191), Mod(-516/6719059*x^5 + 59549/6719059*x^4 - 144104/6719 059*x^3 + 56369/6719059*x^2 + 2656099/6719059*x + 5563831/6719059, x^6 - 4*x ^5 + 15*x^4 + 14*x^3 + 120*x^2 + 36*x + 191), Mod(-54291/6719059*x^5 + 21048 9/6719059*x^4 - 786258/6719059*x^3 - 905381/6719059*x^2 - 6840464/6719059*x - 4510816/6719059, x^6 - 4*x^5 + 15*x^4 + 14*x^3 + 120*x^2 + 36*x + 191), Mo d(-48132/6719059*x^5 + 241931/6719059*x^4 - 785055/6719059*x^3 - 523468/6719 059*x^2 - 1628025/6719059*x + 4121552/6719059, x^6 - 4*x^5 + 15*x^4 + 14*x^3 + 120*x^2 + 36*x + 191), 0, 0, 0, 0, 0, 0; 0, 0, 0, Mod(-499864/154538357*x ^5 - 232506/154538357*x^4 + 2075504/154538357*x^3 - 39252216/154538357*x^2 - 107292314/154538357*x - 129681996/154538357, x^6 - 4*x^5 + 15*x^4 + 14*x^3 + 120*x^2 + 36*x + 191), Mod(1153778/154538357*x^5 - 4109402/154538357*x^4 + 13244560/154538357*x^3 + 24564582/154538357*x^2 + 151883496/154538357*x - 1 0149974/154538357, x^6 - 4*x^5 + 15*x^4 + 14*x^3 + 120*x^2 + 36*x + 191), Mo d(171940/154538357*x^5 - 3019052/154538357*x^4 + 13537158/154538357*x^3 - 30 710744/154538357*x^2 - 25903390/154538357*x - 175396598/154538357, x^6 - 4*x ^5 + 15*x^4 + 14*x^3 + 120*x^2 + 36*x + 191), 1, Mod(-1964/292133*x^5 + 4725 /292133*x^4 - 14044/292133*x^3 - 95698/292133*x^2 - 164828/292133*x - 456632 /292133, x^6 - 4*x^5 + 15*x^4 + 14*x^3 + 120*x^2 + 36*x + 191), Mod(-1406/29 2133*x^5 + 4870/292133*x^4 - 7674/292133*x^3 - 64939/292133*x^2 - 119188/292 133*x + 52103/292133, x^6 - 4*x^5 + 15*x^4 + 14*x^3 + 120*x^2 + 36*x + 191), Mod(-516/6719059*x^5 + 59549/6719059*x^4 - 144104/6719059*x^3 + 56369/67190 59*x^2 + 2656099/6719059*x + 5563831/6719059, x^6 - 4*x^5 + 15*x^4 + 14*x^3 + 120*x^2 + 36*x + 191), Mod(-54291/6719059*x^5 + 210489/6719059*x^4 - 78625 8/6719059*x^3 - 905381/6719059*x^2 - 6840464/6719059*x - 4510816/6719059, x^ 6 - 4*x^5 + 15*x^4 + 14*x^3 + 120*x^2 + 36*x + 191), Mod(-48132/6719059*x^5 + 241931/6719059*x^4 - 785055/6719059*x^3 - 523468/6719059*x^2 - 1628025/671 9059*x + 4121552/6719059, x^6 - 4*x^5 + 15*x^4 + 14*x^3 + 120*x^2 + 36*x + 1 91)]], 0, 0, 0, [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 , 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1 , 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, -1, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0; 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0 , -1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, -1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0], [0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 , 0, 0; 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 , 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1 ; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0 , 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0 , -1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0 , 0, -1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0; 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1; 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0; 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0; 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ; 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 1; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1; 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0; 0, 0, 0, 0 , 0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 , 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 1, 0, 0 , 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, -1, 0 , 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0; 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1; 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0; 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 1; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1; 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]], 0, [12, -4, 0, 0, 0, 0, 0, 0, 0, 6, -2, 0]] csa al3 al3 contains nfabs: 1 trivial algebra over a quadratic field [[x, [1, -x], [1, 1], 1, [], [], [[1], [1]], Mat(1), 1, [y^2 + 1, [0, 1], -4 , 1, [Mat([1, 0.E-57 + 1.0000000000000000000000000000000000000*I]), [1, 1.00 00000000000000000000000000000000000; 1, -1.000000000000000000000000000000000 0000], [16, 16; 16, -16], [2, 0; 0, -2], [2, 0; 0, 2], [1, 0; 0, -1], [1, [0 , -1; 1, 0]], [2]], [0.E-57 + 1.0000000000000000000000000000000000000*I], [1 , y], [1, 0; 0, 1], [1, 0, 0, -1; 0, 1, 1, 0]], [x^2 + 1, -x, -1, y^2 + 1, x ], [[x^2 + 1, [0, 1], -4, 1, [Mat([1, 0.E-57 + 1.000000000000000000000000000 0000000000*I]), [1, 1.0000000000000000000000000000000000000; 1, -1.000000000 0000000000000000000000000000], [16, 16; 16, -16], [2, 0; 0, -2], [2, 0; 0, 2 ], [1, 0; 0, -1], [1, [0, -1; 1, 0]], [2]~], [0.E-57 + 1.0000000000000000000 000000000000000000*I], [1, x], [1, 0; 0, 1], [1, 0, 0, -1; 0, 1, 1, 0]], [[1 , 0; 0, -1], [1, 0; 0, -1], 1, Vecsmall([1, 2])]]], [Mod(y, y^2 + 1)], Mod(1 , y^2 + 1), Vecsmall([]), [[], Vecsmall([])], 0, [1, 0; 0, 1], [1, 0; 0, 1], [[1, 0; 0, 1], [0, -1; 1, 0]], 0, [2, 0]] [y]~ [-2*y + 1]~ [-3, 1]~ [-y + 1]~ [-3, 2]~ [Mod(Mod(y + 2, y^2 + 1), x)]~ [-1/5, 7/5]~ [-1/5, 7/5]~ [Mod(Mod(-y, y^2 + 1), x)]~ [1, 2]~ [Mod(Mod(y, y^2 + 1), x)] [ 0 1] [-1 0] x + Mod(2*y - 1, y^2 + 1) Mod(-y - 3, y^2 + 1) Mod(-y - 3, y^2 + 1) 1 1 1 0 0 1 1 1 0 [] trivial algebra over Q [[x, [1], [1, 1], 1, [], [], [[1], [1]], Mat(1), 1, [y, [1, 0], 1, 1, [Mat(1 ), Mat(1), Mat(16), Mat(1), 1, Mat(1), [1, 0], []], [0.E-57], [1], Mat(1), M at(1)], [x, 0, 0, y, x], [[x, [1, 0], 1, 1, [Mat(1), Mat(1), Mat(16), Mat(1) , 1, Mat(1), [1, 0], []~], [0.E-77], [1], Mat(1), Mat(1)], [Mat(1), Mat(1), 1, Vecsmall([1])]]], [0], Mod(1, y), Vecsmall([0]), [[], Vecsmall([])], 0, M at(1), Mat(1), [Mat(1)], 0, [1]] [-2]~ [1/3]~ [4/5]~ [-5/3]~ [14/5]~ [-2/3]~ [12/5]~ [12/5]~ [-1/2]~ [1/3]~ [-2] [Mod(1/3, x)] x - 1/3 4/5 4/5 1 1 1 0 0 1 1 1 0 [] trivial CSA over Q [Mod(9, y)]~ [4]~ nontrivial CSA over Q [Mod(0, y), Mod(12, y), Mod(6, y), Mod(12, y)]~ [-81, 27, 36, 45]~ empty matrices -v: 1 v^(-1): 1 v^n: 1 v^0: 1 mt(v)1 spl(v)1 trace(v): 1 norm(v): 1 charpoly(v): 1 v+v: 1 v-v: 1 v*v: 1 v/v: 1 v\v: 1 v*nv: 1 v*v 2: 1 trace(v) char 2: 1 [0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 0, [1]] [12]~ [-1/7]~ [83/7]~ [85/7]~ [-12/7]~ [-12]~ [1/12]~ [1/49]~ [-1/84]~ 12 -1/7 x - 12 [-1/7] [1]~ 1 1 1 1 trivial tensor product 1 1 splitting a nasty commutative algebra 1 1 1 1 non associative algebra 0 csa without maximal order simplify bug #1671 testing simplify: degree 1 cyclic over Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 testing simplify: degree 1 cyclic over Q(i) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 testing simplify: degree 1 csa over Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 testing simplify: degree 1 csa over Q(i) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 testing simplify: quatalg over Q(s5) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 testing simplify: quatalg csa over Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [1 0] [0 0] [0 1/2] [0 0] *** at top-level: algsplittingfield(almt) *** ^----------------------- *** algsplittingfield: incorrect type in alg_get_splittingfield [use alginit] (t_VEC). *** at top-level: algdegree(almt) *** ^--------------- *** algdegree: incorrect type in alg_get_degree [use alginit] (t_VEC). *** at top-level: alghassei(almt) *** ^--------------- *** alghassei: incorrect type in alg_get_hasse_i [use alginit] (t_VEC). *** at top-level: alghassef(almt) *** ^--------------- *** alghassef: incorrect type in alg_get_hasse_f [use alginit] (t_VEC). *** at top-level: algrandom(1,1) *** ^-------------- *** algrandom: incorrect type in checkalg [please apply alginit()] (t_INT). *** at top-level: algrandom(1,I) *** ^-------------- *** algrandom: incorrect type in algrandom (t_COMPLEX). 0 *** at top-level: algdim([1,[1],0,0,0,0,0,0,0,0]) *** ^------------------------------- *** algdim: incorrect type in checkalg [please apply alginit()] (t_VEC). *** at top-level: algdim([1,[1],0,0,0,0,0,0,0,0],1) *** ^--------------------------------- *** algdim: incorrect type in checkalg [please apply alginit()] (t_VEC). *** at top-level: algtensor(al,al2) *** ^----------------- *** algtensor: incorrect type in checkalg [please apply alginit()] (t_VEC). *** at top-level: algtensor(al2,al) *** ^----------------- *** algtensor: incorrect type in checkalg [please apply alginit()] (t_VEC). *** at top-level: algtensor(1,z,1) *** ^---------------- *** algtensor: incorrect type in checkalg [please apply alginit()] (t_INT). *** at top-level: algisassociative([1],0) *** ^----------------------- *** algisassociative: incorrect type in algisassociative (mult. table) (t_VEC). 0 *** at top-level: algmul(almt,a,b) *** ^---------------- *** algmul: incorrect type in alg_model (t_COL). *** at top-level: algtomatrix(almt,a,1) *** ^--------------------- *** algtomatrix: incorrect type in alg_model (t_COL). *** at top-level: alginv(almt,a) *** ^-------------- *** alginv: incorrect type in alg_model (t_COL). *** at top-level: algalgtobasis(almt,a) *** ^--------------------- *** algalgtobasis: incorrect type in algalgtobasis [use alginit] (t_VEC). *** at top-level: algbasistoalg(almt,[0,0,0,0]~) *** ^------------------------------ *** algbasistoalg: incorrect type in algbasistoalg [use alginit] (t_VEC). *** at top-level: algpoleval(almt,1,a) *** ^-------------------- *** algpoleval: incorrect type in algpoleval (t_INT). *** at top-level: algadd(almt,[zero;zero],m) *** ^-------------------------- *** algadd: inconsistent dimensions in alM_add (rows). *** at top-level: algadd(almt,[zero;zero;zero],[zero;zero]) *** ^----------------------------------------- *** algadd: inconsistent dimensions in alM_add (columns). *** at top-level: algsub(almt,[zero;zero],m) *** ^-------------------------- *** algsub: inconsistent dimensions in alM_sub (rows). *** at top-level: algsub(almt,[zero;zero;zero],[zero;zero]) *** ^----------------------------------------- *** algsub: inconsistent dimensions in alM_sub (columns). *** at top-level: algmul(almt,m,[zero;zero;zero]) *** ^------------------------------- *** algmul: inconsistent dimensions in alM_mul. *** at top-level: algsqr(almt,[zero;zero]) *** ^------------------------ *** algsqr: inconsistent dimensions in alM_mul. *** at top-level: algdivl(almt,m,zero) *** ^-------------------- *** algdivl: forbidden division t_MAT (1x2) \ t_COL (4 elts). *** at top-level: algdivl(almt,m,[zero,zero;zero,zero]) *** ^------------------------------------- *** algdivl: inconsistent dimensions in algdivl. *** at top-level: algdivl(almt,m,m) *** ^----------------- *** algdivl: inconsistent dimensions in algdivl (nonsquare). *** at top-level: alginv(almt,m) *** ^-------------- *** alginv: inconsistent dimensions in alginv_i (nonsquare). *** at top-level: algtomatrix(almt,m,1) *** ^--------------------- *** algtomatrix: inconsistent dimensions in algleftmultable_mat (nonsquare). *** at top-level: algpow(almt,m,3) *** ^---------------- *** algpow: inconsistent dimensions in alM_mul. *** at top-level: algtrace(almt,m) *** ^---------------- *** algtrace: inconsistent dimensions in algtrace_mat (nonsquare). *** at top-level: algcharpoly(almt,m) *** ^------------------- *** algcharpoly: inconsistent dimensions in algleftmultable_mat (nonsquare). *** at top-level: algcharpoly(alginit(nfinit(y),[-1,-1]),m) *** ^----------------------------------------- *** algcharpoly: incorrect type in easychar (t_MAT). *** at top-level: algnorm(almt,m) *** ^--------------- *** algnorm: inconsistent dimensions in algleftmultable_mat (nonsquare). *** at top-level: algnorm(alginit(nfinit(y),[-1,-1]),m) *** ^------------------------------------- *** algnorm: inconsistent dimensions in det. *** at top-level: alginit(nfinit(y),[2,[[],[]],[x]]) *** ^---------------------------------- *** alginit: incorrect type in Hasse invariant (t_POL). *** at top-level: alginit(nfinit(y),[2,[],[1,1]]) *** ^------------------------------- *** alginit: incorrect type in checkhasse [hf] (t_VECSMALL). *** at top-level: alginit(nfinit(y),[2,[[],[]],Vecsmall([1])]) *** ^-------------------------------------------- *** alginit: domain error in checkhasse: sum(Hasse invariants) != 0 *** at top-level: alginit(y,[2,[[],[]],[1]]) *** ^-------------------------- *** alginit: incorrect type in alginit (t_POL). *** at top-level: alginit(nfinit(y),y) *** ^-------------------- *** alginit: incorrect type in alginit (t_POL). *** at top-level: alginit(nfinit(y),[1,2,3,4]) *** ^---------------------------- *** alginit: incorrect type in alginit (t_VEC). *** at top-level: algtableinit(mt,y) *** ^------------------ *** algtableinit: incorrect type in algtableinit (t_POL). *** at top-level: alginit(nfinit(y^2+1),-3) *** ^------------------------- *** alginit: domain error in alg_matrix: n <= 0 *** at top-level: alginit(nfinit(x^2+1),3) *** ^------------------------ *** alginit: incorrect priority in alginit: variable x >= x *** at top-level: alginit(nfinit(highvar^2+1),3) *** ^------------------------------ *** alginit: incorrect priority in alginit: variable x >= highvar *** at top-level: ...t(nfinit(y^2-2),[-1,-1]);algrandom(al,-10) *** ^----------------- *** algrandom: domain error in algrandom: b < 0 *** at top-level: algrelmultable(al) *** ^------------------ *** algrelmultable: incorrect type in alg_get_relmultable [algebra not given via mult. table] (t_VEC). *** at top-level: algsplittingdata(al) *** ^-------------------- *** algsplittingdata: incorrect type in alg_get_splittingdata [algebra not given via mult. table] (t_VEC). *** at top-level: alghasse(almt,1) *** ^---------------- *** alghasse: incorrect type in alghasse [use alginit] (t_VEC). *** at top-level: algindex(almt,1) *** ^---------------- *** algindex: incorrect type in algindex [use alginit] (t_VEC). *** at top-level: algisdivision(almt) *** ^------------------- *** algisdivision: sorry, algisdivision for table algebras is not yet implemented. *** at top-level: algissplit(almt) *** ^---------------- *** algissplit: incorrect type in algissplit [use alginit] (t_VEC). *** at top-level: algisramified(almt) *** ^------------------- *** algisramified: incorrect type in algisramified [use alginit] (t_VEC). *** at top-level: algramifiedplaces(almt) *** ^----------------------- *** algramifiedplaces: incorrect type in algramifiedplaces [use alginit] (t_VEC). *** at top-level: alghasse(al,-1) *** ^--------------- *** alghasse: domain error in is_place_emb: pl <= 0 *** at top-level: alghasse(al,3) *** ^-------------- *** alghasse: domain error in is_place_emb: pl > 2 *** at top-level: alghasse(al,2^100) *** ^------------------ *** alghasse: domain error in is_place_emb: pl > 2 *** at top-level: alghasse(al,[]) *** ^--------------- *** alghasse: incorrect type in is_place_emb (t_VEC). *** at top-level: alghasse(al,1/3) *** ^---------------- *** alghasse: incorrect type in is_place_emb (t_FRAC). *** at top-level: algtableinit([matid(2),[0,1/2;1,0]]) *** ^------------------------------------ *** algtableinit: domain error in algtableinit: denominator(mt) != 1 *** at top-level: alginit(Q,[matid(2),[0,1/2;1,0]]) *** ^--------------------------------- *** alginit: domain error in alg_csa_table: denominator(mt) != 1 *** at top-level: alginit(Q,[-1/2,-1]) *** ^-------------------- *** alginit: domain error in alg_hilbert: denominator(a) != 1 *** at top-level: alginit(Q,[-1,-1/2]) *** ^-------------------- *** alginit: domain error in alg_hilbert: denominator(b) != 1 *** at top-level: alginit(rnfinit(Q,x^2+1),[-x,-1/2]) *** ^----------------------------------- *** alginit: domain error in alg_cyclic: denominator(b) != 1 *** at top-level: algsqr([0,0,0,0,0,0,0,0,0,0,0],[]~) *** ^----------------------------------- *** algsqr: incorrect type in checkalg [please apply alginit()] (t_VEC). *** at top-level: algsqr([0,0,0,0,0,0,0,0,[],0,0],[]~) *** ^------------------------------------ *** algsqr: incorrect type in checkalg [please apply alginit()] (t_VEC). *** at top-level: algsqr([0,0,0,0,0,0,0,0,[0],0,0],[]~) *** ^------------------------------------- *** algsqr: incorrect type in checkalg [please apply alginit()] (t_VEC). *** at top-level: algsqr([0,0,0,0,0,0,0,0,[[;]],0,0],[]~) *** ^--------------------------------------- *** algsqr: incorrect type in alg_model (t_COL). *** at top-level: algsqr([[],0,0,0,0,0,0,0,[[;]],0,0],[]~) *** ^---------------------------------------- *** algsqr: incorrect type in checkalg [please apply alginit()] (t_VEC). *** at top-level: algsqr([[],[0],0,0,0,0,0,0,[[;]],0,0],[]~) *** ^------------------------------------------ *** algsqr: incorrect type in checkalg [please apply alginit()] (t_VEC). *** at top-level: algdim([[],[0],0,0,0,0,0,0,[[;]],0,0]) *** ^-------------------------------------- *** algdim: incorrect type in checkalg [please apply alginit()] (t_VEC). *** at top-level: algdegree([[],[0],0,0,0,0,0,0,[[;]],0,0]) *** ^----------------------------------------- *** algdegree: incorrect type in checkalg [please apply alginit()] (t_VEC). *** at top-level: algdegree([rnfinit(nfinit(y),x),[[]],0,0,0,0,0 *** ^---------------------------------------------- *** algdegree: incorrect type in alg_get_degree [use alginit] (t_VEC). *** at top-level: algcenter([rnfinit(nfinit(y),x),[[]],0,0,0,0,0 *** ^---------------------------------------------- *** algcenter: incorrect type in alg_get_center [use alginit] (t_VEC). *** at top-level: algcentralproj(almt,0) *** ^---------------------- *** algcentralproj: incorrect type in alcentralproj (t_INT). *** at top-level: algcentralproj(almt,[zero,zero]) *** ^-------------------------------- *** algcentralproj: incorrect type in alcentralproj [z[i]'s not surjective] (t_VEC). *** at top-level: algsubalg(almt,0) *** ^----------------- *** algsubalg: incorrect type in algsubalg (t_INT). *** at top-level: algisassociative([]) *** ^-------------------- *** algisassociative: incorrect type in algisassociative (mult. table) (t_VEC). *** at top-level: algisassociative([matid(2),Mat([1,1])]) *** ^--------------------------------------- *** algisassociative: incorrect type in algisassociative (mult. table) (t_VEC). 0 *** at top-level: algisassociative([matid(1)],[]) *** ^------------------------------- *** algisassociative: incorrect type in algisassociative (t_VEC). *** at top-level: algsqr(algtableinit([matid(1)]),[1,2]~) *** ^--------------------------------------- *** algsqr: incorrect type in alg_model (t_COL). *** at top-level: algsqr(al,vector(691)~) *** ^----------------------- *** algsqr: incorrect type in alg_model (t_COL). *** at top-level: algsqr(al,[1,2,3,4,5,6,7,f^2]~) *** ^------------------------------- *** algsqr: incorrect type in checkalgx (t_POL). *** at top-level: algsqr(al,[f^3,[]]~) *** ^-------------------- *** algsqr: incorrect type in checkalgx (t_VEC). *** at top-level: algmul(al,[;],[1,2]~) *** ^--------------------- *** algmul: incorrect type in algmul (t_COL). *** at top-level: algdivl(al,[;],matid(1)) *** ^------------------------ *** algdivl: impossible inverse in algdivl: [;]. *** at top-level: algdivl(al,matid(1),matrix(1,2)) *** ^-------------------------------- *** algdivl: inconsistent dimensions in algdivl (nonsquare). *** at top-level: alginv(al,[0,0]~) *** ^----------------- *** alginv: impossible inverse in alginv: [0, 0]~. *** at top-level: algalgtobasis(al0mt,[1]~) *** ^------------------------- *** algalgtobasis: incorrect type in algalgtobasis [use alginit] (t_VEC). *** at top-level: algbasistoalg(al0mt,[1]~) *** ^------------------------- *** algbasistoalg: incorrect type in algbasistoalg [use alginit] (t_VEC). *** at top-level: nfgrunwaldwang(nfinit(y),0,[],[],'x) *** ^------------------------------------ *** nfgrunwaldwang: incorrect type in nfgrunwaldwang (t_INT). *** at top-level: nfgrunwaldwang(nfinit(y),[2],'x-'x,[1]) *** ^--------------------------------------- *** nfgrunwaldwang: incorrect type in nfgrunwaldwang (t_POL). *** at top-level: alginit(rnfinit(nfinit(y),x),0) *** ^------------------------------- *** alginit: incorrect type in alginit (t_INT). *** at top-level: alginit(rnfinit(nfinit(y),x),[1,2,3,4]) *** ^--------------------------------------- *** alginit: incorrect type in alginit (t_VEC). *** at top-level: alginit(nfinit(y),[matid(2),matid(2)]) *** ^-------------------------------------- *** alginit: incorrect type in alg_csa_table (t_VEC). *** at top-level: alginit(nfinit(y),[matid(2),[0,1;1,0]]) *** ^--------------------------------------- *** alginit: domain error in alg_csa_table: (nonsquare) dimension != 1 *** at top-level: nfgrunwaldwang(nfinit(y),0,[],[0]) *** ^---------------------------------- *** nfgrunwaldwang: incorrect type in nfgrunwaldwang (t_INT). *** at top-level: nfgrunwaldwang(nfinit(y),[2],[],[0]) *** ^------------------------------------ *** nfgrunwaldwang: inconsistent dimensions in nfgrunwaldwang [#Lpr != #Ld]. *** at top-level: nfgrunwaldwang(nfinit(y),[2],[2],[]) *** ^------------------------------------ *** nfgrunwaldwang: domain error in nfgrunwaldwang [pl should have r1 components]: #pl != 1 *** at top-level: nfgrunwaldwang(nfinit(y),[2],[6],[0]) *** ^------------------------------------- *** nfgrunwaldwang: sorry, nfgrunwaldwang for non prime-power local degrees (a) is not yet implemented. *** at top-level: nfgrunwaldwang(nfinit(y),[2,3],[2,3],[0]) *** ^----------------------------------------- *** nfgrunwaldwang: sorry, nfgrunwaldwang for non prime-power local degrees (b) is not yet implemented. *** at top-level: nfgrunwaldwang(nfinit(y),[2],[3],[-1]) *** ^-------------------------------------- *** nfgrunwaldwang: sorry, nfgrunwaldwang for non prime-power local degrees (c) is not yet implemented. *** at top-level: nfgrunwaldwang(nfinit(y),[[]~],[3],[-1]) *** ^---------------------------------------- *** nfgrunwaldwang: incorrect type in checkprid (t_COL). *** at top-level: nfgrunwaldwang(nfinit(y),[2],[9],[0]) *** ^------------------------------------- *** nfgrunwaldwang: sorry, nfgrunwaldwang for nonprime degree is not yet implemented. *** at top-level: algdegree(A) *** ^------------ *** algdegree: incorrect type in alg_get_degree [use alginit] (t_VEC). *** at top-level: algsub(A,1,1) *** ^------------- *** algsub: incorrect type in alg_model (t_INT). *** at top-level: algadd(A,1,1) *** ^------------- *** algadd: incorrect type in alg_model (t_INT). *** at top-level: algneg(A,1) *** ^----------- *** algneg: incorrect type in alg_model (t_INT). *** at top-level: algmul(A,1,1) *** ^------------- *** algmul: incorrect type in alg_model (t_INT). *** at top-level: algsqr(A,1) *** ^----------- *** algsqr: incorrect type in alg_model (t_INT). *** at top-level: algdivl(A,1,1) *** ^-------------- *** algdivl: incorrect type in alg_model (t_INT). *** at top-level: algdivr(A,1,1) *** ^-------------- *** algdivr: incorrect type in alg_model (t_INT). *** at top-level: alginv(A,1) *** ^----------- *** alginv: incorrect type in alg_model (t_INT). *** at top-level: ...;PR=idealprimedec(K,2);A=alginit(K,[3,[PR,[1]] *** ^--------------------- *** alginit: domain error in checkhasse: Hasse invariant at real place [must be 0 or 1/2] != 0 *** at top-level: ...;P3=idealprimedec(K,3);A=alginit(K,[3,[concat( *** ^--------------------- *** alginit: domain error in checkhasse: Hasse invariant at real place [must be 0 or 1/2] != 0 *** at top-level: algtensor(alginit(nfinit(y),2),alginit(nfinit( *** ^---------------------------------------------- *** algtensor: inconsistent tensor product [not the same center] t_VEC (11 elts) , t_VEC (11 elts). *** at top-level: algtensor(alginit(nfinit(y),2),alginit(nfinit( *** ^---------------------------------------------- *** algtensor: sorry, tensor of cylic algebras of noncoprime degrees is not yet implemented. *** at top-level: alginit(nf,[2,[[p2,p2],[1/2,1/2]],[0]]) *** ^--------------------------------------- *** alginit: error in checkhasse [duplicate prime ideal]. *** at top-level: alginit(nf,[2,[[p2,p3],[1/2,1/2]],[0,0]]) *** ^----------------------------------------- *** alginit: domain error in checkhasse [hi should have r1 components]: #hi != 1 *** at top-level: alginit(nf,[2,[[p2,p3],[1/2,1/2],0],[0]]) *** ^----------------------------------------- *** alginit: incorrect type in Hasse invariant (t_VEC). *** at top-level: alginit(nf,[2,[0,[1/2,1/2]],[0]]) *** ^--------------------------------- *** alginit: incorrect type in Hasse invariant (t_VEC). *** at top-level: alginit(nf,[2,[[p2,p3],0],[0]]) *** ^------------------------------- *** alginit: incorrect type in Hasse invariant (t_INT). *** at top-level: alginit(nf,[2,[[p2,p3],[1/2,1/2,0]],[0]]) *** ^----------------------------------------- *** alginit: inconsistent dimensions in checkhasse [Lpr and Lh should have same length]. *** at top-level: alginit(nf,[2,[[p2,p3],[1/2,1/2]],[1/3]]) *** ^----------------------------------------- *** alginit: domain error in hasseconvert [degree should be a denominator of the invariant]: denom(h) ndiv 2 *** at top-level: algcharpoly(al,a,'z) *** ^-------------------- *** algcharpoly: incorrect priority in algredcharpoly: variable z >= y *** at top-level: algcharpoly(al,[1,2,3]~) *** ^------------------------ *** algcharpoly: incorrect type in alg_model (t_COL). *** at top-level: algindex(1,1) *** ^------------- *** algindex: incorrect type in checkalg [please apply alginit()] (t_INT). *** at top-level: algsqr(al,[Mod(1,y),Mod(2,y)]~) *** ^------------------------------- *** algsqr: incorrect type in alg_model (t_COL). *** at top-level: algsqr(al,[Mod(1,y),Mod(2,y)]~) *** ^------------------------------- *** algsqr: incorrect type in alg_model (t_COL). *** at top-level: alfail=alginit(nf,[0,0],'x) *** ^-------------------- *** alginit: domain error in rnfequation: issquarefree(B) = 0 *** at top-level: algb(al) *** ^-------- *** algb: incorrect type in alg_get_b [noncyclic algebra] (t_VEC). *** at top-level: algaut(al) *** ^---------- *** algaut: incorrect type in alg_get_aut [noncyclic algebra] (t_VEC). *** at top-level: algtableinit([Mat(1)],1) *** ^------------------------ *** algtableinit: not a prime number in algtableinit: 1. *** at top-level: algtableinit([Mat(1)],4) *** ^------------------------ *** algtableinit: not a prime number in algtableinit: 4. *** at top-level: algpoleval(al,x+1,"toto") *** ^------------------------- *** algpoleval: incorrect type in alg_model (t_STR). *** at top-level: algpoleval(al,x+1,[1,2,3]) *** ^-------------------------- *** algpoleval: incorrect type in algpoleval [vector must be of length 2] (t_VEC). *** at top-level: algpoleval(al,x+1,[1,2]) *** ^------------------------ *** algpoleval: incorrect type in algpoleval [mx must be the multiplication table of x] (t_INT). *** at top-level: algpoleval(al,x+1,[a,mb]) *** ^------------------------- *** algpoleval: incorrect type in algpoleval [mx must be the multiplication table of x] (t_MAT). *** at top-level: algpoleval(al,x+1,[1,mb]) *** ^------------------------- *** algpoleval: incorrect type in algpoleval [mx must be the multiplication table of x] (t_MAT). *** at top-level: alginit(nfinit(y),["a",[[],[]],[]]) *** ^----------------------------------- *** alginit: incorrect type in alginit [degree should be an integer] (t_STR). *** at top-level: alginit(nfinit(y),[1,[[],[]],[]]) *** ^--------------------------------- *** alginit: domain error in alg_hasse: degree <= 1 *** at top-level: alginit(nfinit(y),[0,[[],[]],[]]) *** ^--------------------------------- *** alginit: domain error in alg_hasse: degree <= 1 new algsimpledec 0 [0, [[[0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 0, [1]], Mat([1, 1, 0]), [0; 1; 0]], [[0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 0, [1]], Mat([1, 0 , 0]), [1; -1; -1]], [[0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 0, [1]], Mat([1, 0, 1]), [0; 0; 1]]]] 0 [0, [[[0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 5, [1]], Mat([1, 1, 0]), [0; 1; 0]], [[0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 5, [1]], Mat([1, 0 , 1]), [0; 0; 1]], [[0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 5, [1]], Ma t([1, 0, 0]), [1; 4; 4]]]] [[0; 0; 1], [[[0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 0, [1]], Mat([1, 0, 0]), [1; -1; 0]], [[0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 0, [1]], Mat([1, 1, 0]), [0; 1; 0]]]] [[0; 0; 1], [[[0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 5, [1]], Mat([1, 1, 0]), [0; 1; 0]], [[0, 0, 0, 0, 0, 0, Mat(1), Mat(1), [Mat(1)], 5, [1]], M at([1, 0, 0]), [1; 4; 0]]]] norm(,1) 16 Mod(-y + 1, y^2 - 5) 16 16/6561 223225143999841/5764801 1 1 trace(,1) Mod(2*y + 2, y^2 - 5) 8 8 1 1 1 1 charpoly(,1) x^2 - 2*y*x - 4*y x^8 - 40*x^6 - 160*x^5 + 240*x^4 + 3200*x^3 + 9600*x^2 + 12800*x + 6400 x^8 - 40*x^6 - 160*x^5 + 240*x^4 + 3200*x^3 + 9600*x^2 + 12800*x + 6400 1 1 1 more al_MAT tests add 1 1 1 1 alg/basis 1 1 1 1 1 1 1 1 charpoly 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 inv/div 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 mul 1 1 1 neg 1 1 1 norm 1 1 1 pow 1 1 1 sqr 1 1 1 sub 1 1 1 trace 1 1 1 algtomatrix 1 1 1 1 1 1 1 1 algleftmultable 1 1 1 1 1 1 1 1 1 1 1 1 more al_CSA tests 1 1 1 1 charpoly 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 inv/div 1 1 1 1 1 1 1 1 mul 1 1 1 neg 1 1 1 norm 1 1 1 pow 1 1 1 sqr 1 1 1 sub 1 1 1 trace 1 1 1 algtomatrix 1 1 1 1 1 1 1 1 algleftmultable 1 1 1 1 1 1 1 1 1 1 csa pol/polmod bugs [[1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [0, -1, 0, 0; 1, 0, 0, 0; 0, 0, 0, -1; 0, 0, 1, 0], [0, 0, y, 0; 0, 0, 0, -y; 1, 0, 0, 0; 0, -1, 0, 0 ], [0, 0, 0, y; 0, 0, y, 0; 0, 1, 0, 0; 1, 0, 0, 0]] [Mod(1000/9*y + 4400/81, y^2 - 5), Mod(1000/9*y, y^2 - 5), Mod(1000/9*y, y^2 - 5), Mod(1000/27*y, y^2 - 5)]~ [Mod(927/1936*y + 2025/1936, y^2 - 5), Mod(-729/1936*y - 8343/9680, y^2 - 5) , Mod(-729/1936*y - 8343/9680, y^2 - 5), Mod(-243/1936*y - 2781/9680, y^2 - 5)]~ [Mod(50/9*y, y^2 - 5), Mod(10, y^2 - 5), Mod(10, y^2 - 5), Mod(10/3, y^2 - 5 )]~ 1 1 1 1 1 1 1 csa: denom over Z[y] but not over ZK [[1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], [0, -1, 0, 0; 1, 0, 0, 0; 0, 0, 0, -1; 0, 0, 1, 0], [0, 0, 1/2*y - 1/2, 0; 0, 0, 0, -1/2*y + 1/2; 1, 0, 0, 0; 0, -1, 0, 0], [0, 0, 0, 1/2*y - 1/2; 0, 0, 1/2*y - 1/2, 0; 0, 1, 0, 0; 1, 0, 0, 0]] *** at top-level: al=alginit(nf,mt*Mod(1,nf.pol)) *** ^---------------------------- *** alginit: domain error in alg_csa_table: denominator(mt) != 1 al_MAT over al_CSA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 algleftmultable 1 1 1 1 1 1 nfgrunwaldwang SEGV #1669 x^2 + Mod(-17, y) *** at top-level: nfgrunwaldwang(nfinit(x),[2,3],[1,2],Vecsmall( *** ^---------------------------------------------- *** nfgrunwaldwang: incorrect priority in nfgrunwaldwang: variable x >= x [1] [1] [1] [1/2] [1/2] 1 GW modified arguments 1 *** at top-level: algpoleval(al,pol,a)==0 *** ^----------------------- *** algpoleval: sorry, algpoleval with x in basis form and pol not in Q[x] is not yet implemented. *** at top-level: algpoleval(al,pol,[;]) *** ^---------------------- *** algpoleval: incorrect type in algpoleval (t_MAT). 1 1 *** at top-level: al2=algtensor(al,al) *** ^---------------- *** algtensor: sorry, tensor of noncyclic algebras is not yet implemented. *** at top-level: al2=algtensor(al,al) *** ^---------------- *** algtensor: sorry, tensor of noncyclic algebras is not yet implemented. Total time spent: 1518