Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Testing latest pari + WASM + node.js... and it works?! Wow.

28495 views
License: GPL3
ubuntu2004
  ***   Warning: new stack size = 40000000 (38.147 Mbytes).
1
[x^2 - 2]
2
[x^2 - 5, x^2 + 3]
3
[x^4 + (y - 1)*x^2 - 3]
4
[x^2 + 3, x^3 + 3*x + 5]
5
1
6
[1]
7
[1, 1]
8
1
9
[1]
10
[x^2 + 3, x^2 + 7, x^3 - 3*x - 9]
11
1
12
[1, 1]
13
[1, 1]
14
[x^3 - 24*x + (2*y - 1), x^3 - 15*x + (-1204*y + 602)]
15
[x^2 - 7, x^2 - 3, x^2 + 7]
16
[1, 1]
17
[1]
18
[x^3 - 39*x + 14*y, x^3 + 6*x - 4*y, x^4 - 4*y*x^3 - 5853*x^2 + 3916*y*x + 9
59512]
19
[x^2 + 3, x^4 + 5*x^2 + 5]
20
[1, 1]
21
[x^4 + (-y^2 + y - 4)*x^2 + (y^2 - 2*y + 5)]
22
[1, 1]
23
[1]
24
[1, 1, 1, 1]
sanitize
25
x
[x^2 - 2]
hard DLs (#2228)
[1, 2, 1624384359015881850161120870813]
[1, 4, 3506795120905895253346115478005586436761515635553951033]
[x^2 - 1594287814679644276013]
26
x^128 - 16*x^127 - 684*x^126 + 13212*x^125 + 200668*x^124 - 5049860*x^123 - 
30146336*x^122 + 1186356796*x^121 + 1435862576*x^120 - 191745384780*x^119 + 
363578155028*x^118 + 22591184481548*x^117 - 98263944918256*x^116 - 200087816
2017004*x^115 + 13418776543175968*x^114 + 134564725157443676*x^113 - 1282418
754625849300*x^112 - 6737461179136091396*x^111 + 93995433097610312816*x^110 
+ 226044840269518202156*x^109 - 5505715518405046902128*x^108 - 2191054355945
735898876*x^107 + 262534221006411009457732*x^106 - 321443980600793381881268*
x^105 - 10198970280501186915983836*x^104 + 27714140010243885833004228*x^103 
+ 316406547439383330526819280*x^102 - 1357286725570949981734364004*x^101 - 7
423012173456019266038923188*x^100 + 46261869308098728067642338732*x^99 + 113
966448300674289536118109120*x^98 - 1046155131028652394773973458164*x^97 - 61
8039558469611778064452808784*x^96 + 8368134829814328153153448963876*x^95 + 1
643566543034780930327508735684*x^94 + 489612483049610159685686689910716*x^93
 - 1895424128544137904477347629708768*x^92 - 2629118222374901899456369468381
1516*x^91 + 142788837375733871601596280713463840*x^90 + 62529827834106403390
7384129950867884*x^89 - 5669609030266686674408017643840805508*x^88 - 2994119
270437960565949436640256183892*x^87 + 13069204476004589858311807039810357947
2*x^86 - 316282338206254395720990043101075110404*x^85 - 87006614939296871310
9321215414874301808*x^84 + 9825766536971493218162929998486448365172*x^83 - 5
4221085928812218612139389615859470788236*x^82 - 3272016247331427637669054451
355316861892*x^81 + 2107584292395179994101439700413151103940046*x^80 - 78799
61994109611757243672223661657621365548*x^79 - 303348105185261442778380282481
37359600377384*x^78 + 248507336890894167934443671624506366868790596*x^77 - 1
09987712148037893504038682997476773549701132*x^76 - 294292129521704345332192
6397436245000325397196*x^75 + 1035092387532817974010589696730050956360351632
0*x^74 - 31580174044616019084836189417783845432923449612*x^73 - 450953347396
02140624898306886526150599572579056*x^72 + 188111445115553207733803098138083
4963784273739740*x^71 - 5704155210757681832162058259299867054735624323460*x^
70 - 35894562215418054915875456370036301617699968096476*x^69 + 1941696668936
22507530221086633920704340968764775760*x^68 + 399920561130389264251826373129
965479886267511191164*x^67 - 36668880603992890691454511608913044856021691147
06592*x^66 - 3302288127189658590699200910815970469609873646826668*x^65 + 522
10638326549229754505660242738791523908111525984580*x^64 + 384538833250289302
46287793319583236032135082114667892*x^63 - 680630467054850765835839002066508
576244331388409030384*x^62 - 65661365070153459758806702260496534879144371668
4319420*x^61 + 8777469404268783823146618329021520219172920807332381744*x^60 
+ 9189242574921861597136367128882741377968379491026113100*x^59 - 10161074570
9540026848307005892755438603436814336655045492*x^58 - 1145253567607158147073
93668689990227777951301332972378268*x^57 + 952533876087103729511506995197693
283427096316268842402676*x^56 + 18006903111638108712622936332063855229788959
19312855474828*x^55 - 770075688916582585181792810029644450755254663744842421
0032*x^54 - 29482594601570821759474191631658994727019702218552820515852*x^53
 + 69211051244834957106174796385361408699175664734899747373444*x^52 + 362291
673754947214604493664046471573339199311798639467811940*x^51 - 65590010190514
6764603379768936561057146177096216604333766656*x^50 - 3072446230023764174854
895452187659881014717674602134572703292*x^49 + 36232255044936983069202872769
36631792492238886982604463811856*x^48 + 204406081416700135959856012088184178
79117938580083505767406924*x^47 + 168647194395779282194670083238758647061759
66305928394561085868*x^46 - 157075944369969496482141765708684145690663930230
065164836072684*x^45 - 51292121626748179220851807136481394398604354397000169
5439809280*x^44 + 1355926045254955904005109325014890652378254841244935652107
767340*x^43 + 46278753591532918000867949424550912826355445539759094943429712
32*x^42 - 5896218763961719879737017138825388592121079608163917939871271516*x
^41 - 27597514684168489406592654830176951667773576079579141615096632300*x^40
 - 51514155305089820612164919176815870982868045450228480804830319900*x^39 + 
180751724664650676608961781182349184063526339978940335292616522032*x^38 + 10
71908188060034522739125741137418218481626978595412754704085260948*x^37 - 112
6169085405460056444897557464921339547875774019088150785333436752*x^36 - 8428
039334550501825042175801805453726996517610796282509366847875268*x^35 + 87616
7586940722929413196401133369406165888457431708873349754069180*x^34 + 4776628
5867788230705125708012195120854148215476175386747800609133332*x^33 + 1244736
79774189031091242964912514102646254419687094817072413101809945*x^32 - 139739
028113498666642597990209900837217645480059162990227721917406996*x^31 - 13819
18639075572881401560410217022305382015038269732800609154028646028*x^30 - 217
67595480592718702409474861429986361687582999196776325102964229232*x^29 + 876
7729261088351930745582190123035737610754105985584322044656514753376*x^28 + 9
262930190124503841018775374743416216912185536577115609890708478310848*x^27 -
 28277008621123763182526871019999977923914332061718869028570434355655232*x^2
6 - 132041862915805687049564138127288586006733939700118813568337067038864640
*x^25 - 11603263532696332874274751220250649161761897980109165509031192082263
2448*x^24 + 8268359568133719938486455569981435346986792635365863972810348066
09630208*x^23 + 179720322674069386574008834391075882622531880198640361839012
5328585794560*x^22 - 2269104554078262131338466552839253996510674132764055565
511842108887494656*x^21 - 84807445716366353962974981159110318226220025095650
64921974848777011740672*x^20 + 303054022622232240199716403432051082568063151
468689916094146622563958784*x^19 + 18989443728520612361072538577742197881478
406616589451954020826896305831936*x^18 + 17460290106443581532533529661639276
984935951136119033437228798485335965696*x^17 - 58437780707220200131502585026
77542387865604301505508580907423607819337728*x^16 - 526010816759795130466189
28824493455560638823406864454639804235428897488896*x^15 - 822265337414162574
19225506837927199501922657663570194557740099572254113792*x^14 + 630056127345
94316045571179310964907237735140149934422739593833146613760000*x^13 + 241982
936049733373839056235990131872196792360114613411398438535085135233024*x^12 +
 6199993449277306762234769350254173549253038691288484568634074152229142528*x
^11 - 3357206762966266772931851558182737178118184034948704710898175992758827
74528*x^10 - 781943974716837858402429182685260042888783457514154884858694490
43406487552*x^9 + 3029617833656195969671440016144438259953292768815320953946
18228289063354368*x^8 + 1494730366461476895307745377193768604045543380495884
83196436696407228809216*x^7 + 2488845273532797621998547054766496807224491050
698066674066292139385421824*x^6 + 149215302306620910449389127834374841128722
257161249199886031178403957178368*x^5 + 170566186042851878376802325738328107
071063307360158348912138781760707100672*x^4 + 106034334215910109444354215652
411647118039102792257581057591117369416089600*x^3 + 977012266869189907384946
85234880342278555497858112304350198701733596626944*x^2 + 5837233727029926843
2563723339854063917632868393598511518126868440551522304*x + 2092309987714512
3524079616821351751169439755416043399723736660990090018816
27
x^4 + 8*x^2 + 64
28
1
29
1
30
x^8 - x^6 + 4*x^4 + 3*x^2 + 9
31
x^16 + 2*x^15 + 23*x^14 + 2*x^13 + 241*x^12 - 42*x^11 + 1223*x^10 - 46*x^9 +
 2984*x^8 + 174*x^7 + 2919*x^6 + 20*x^5 + 419*x^4 - 378*x^3 - 116*x^2 + 394*
x + 131
32
1
correct absolute, incorrect relative extension
1
8
1
8
[x^2 + (-28*y^2 + 36*y - 25), x^2 + (-y^2 + 2*y - 5)]
[x^2 + (-5*y^2 + 5*y - 3)]
segfault bug with character input
1
bug: relative polynomial instead of absolute
12
examples from doc
[4, 2]
x^8 - 2*x^7 + Mod(-2*y^2 - 4*y - 27, y^3 + 14*y - 1)*x^6 + Mod(2*y^2 + 6*y +
 28, y^3 + 14*y - 1)*x^5 + Mod(18*y^2 + 6*y + 177, y^3 + 14*y - 1)*x^4 + Mod
(-8*y^2 - 8*y - 40, y^3 + 14*y - 1)*x^3 + Mod(-35*y^2 + 46*y - 296, y^3 + 14
*y - 1)*x^2 + Mod(8*y^2 - 18*y + 4, y^3 + 14*y - 1)*x + Mod(11*y^2 - 82*y + 
116, y^3 + 14*y - 1)
1
[24, 12, 12, 2]
[x^2 + (-21*y - 105), x^2 + (-5*y - 25), x^2 + (-y - 5), x^2 + (-y - 1)]
1
tough discrete log
[x^3 + 1220909029402133157056664768993*x + 228173780956868462063268259363773
647292715351*a]
tough factorization for structure of k(pr)^*
[x^3 - 124605152776383880390723164330780836681247395669702932114626903273810
0335653842887163737345746603468166565713887746845621352923776537140672180761
81167534459523573834583687437400009382330108311817598283*x + 377143528906672
9356539838692927482115948230537325657974061964131050584561046525436227324582
0622952576483473221925056061538198425966101542406349670238672049800945490332
6355918086715061533824316389015991356954063061961914858980761767635379232210
677361394668132952855129411876734922669237206671971928041]
tough conductor factorization
[x^7 + (-761531006367603964916479254136*a - 17450457279632374082134698072858
)*x^4 + (296385791099884601586003914706038033921370*a + 86558436318673790645
9373183630751480733673)*x^3 + (-62051225551828486761364779066425261987465888
41812956*a + 6348799923449844511612452311190705620451406417652188)*x^2 + (57
210728339653952666388107508763722879320125120778867080968320*a - 55771409234
0744422452494123875927910036469456045573617674380254)*x + (17861208505098653
84579306791433240841633233296604069006055279495102110194*a + 947663590816202
7035277767457657142710713031328368581445426933931128807729), x^7 + (-7615310
06367603964916479254136*a + 16688926273264770117218218818722)*x^4 + (-296385
791099884601586003914706038033921370*a + 56919857208685330487336926892471344
6812303)*x^3 + (-6205122555182848676136477906642526198746588841812956*a - 12
553922478632693187748930217833231819197995259465144)*x^2 + (-572107283396539
52666388107508763722879320125120778867080968320*a - 614924820680398375118882
231384691632915789581166352484755348574)*x + (178612085050986538457930679143
3240841633233296604069006055279495102110194*a - 7690515057652161650698460666
223901869079798031764512439371654436026697535), x^7 + (248869090110989706404
9863992606012618917666942469541293587644*a - 5745782958820902463975502756157
52078369010078963107498922202)*x^4 + (64219211858516920074834535633012531108
9698298235863825539552157786290050345982204*a - 6914628257269065508760093973
24728692667950320116020837621457249072725511434087315)*x^3 + (-3402329914951
4438746833434853206612324099262056606353510992561405632363362036584637112116
210859170932*a - 60337143798574034809693556944745381354578164685085816915256
498204468528086492763782921687726506336980)*x^2 + (-159537922162631362359749
1739934569697348314745825394826510517361950122282810153284168853858764259202
3261187569184359486658*a - 2790702621900483824388578593671635178575255089373
1162546505367403997259640069277684519214332464178799964352668539518108410)*x
 + (-17500518530049070055430577944332050955678826042055656722446776721725647
78417103923182260184799143818479950534474854269596297096541830710839284*a - 
1977833713829140060319875140823772354925693260529135077637492824565900436753
498993939599637486319102029061827331348166409145492209825526003775), x^7 + (
2488690901109897064049863992606012618917666942469541293587644*a + 3063269196
991987310447414268221764697286677021432648792509846)*x^4 + (-642192118585169
200748345356330125311089698298235863825539552157786290050345982204*a - 13336
5494431207575162435475365485400375764861835188466316100940685901556178006951
9)*x^3 + (-34023299149514438746833434853206612324099262056606353510992561405
632363362036584637112116210859170932*a + 26313844649059596062860122091538769
030478902628479463404263936798836164724456179145809571515647166048)*x^2 + (1
5953792216263136235974917399345696973483147458253948265105173619501222828101
532841688538587642592023261187569184359486658*a - 11953234002741702007910868
5373706548122694034354772142814001937844960368119677448428306757448215867767
03165099355158621752)*x + (-175005185300490700554305779443320509556788260420
5565672244677672172564778417103923182260184799143818479950534474854269596297
096541830710839284*a + 22778186082423305477681734639056725935781065632356940
5392815152393335658336395070757339452687175283549111292856493896812848395667
994815164491)]
vector of subgroups
[[x^3 - 57*x + 8*y], [x^3 + 6*x + 15221], [x^3 - 39*x + 10*y], [x^3 + 6*x + 
y]]
[x^3 - 57*x + 8*y, x^3 + 6*x + 15221, x^3 - 39*x + 10*y, x^3 + 6*x + y]
[x^6 - 114*x^4 + 3249*x^2 + 211136, x^6 + 9909*x^4 - 30442*x^3 + 32650239*x^
2 + 301101822*x + 36005536692, x^6 - 78*x^4 + 1521*x^2 + 329900, x^6 + 12*x^
4 + 36*x^2 + 3299]
[]
[[x^3 + 3*x + y]]
1
[x^3 + (1/10*y^3 - 1/2*y^2 + 1/2*y + 2/5)]
bad inputs
  ***   at top-level: bnrclassfield(y^2+6,Mat(2))
  ***                 ^---------------------------
  *** bnrclassfield: incorrect type in checkbnr [please apply bnrinit()] (t_POL).
  ***   at top-level: bnrclassfield(bnr,m)
  ***                 ^--------------------
  *** bnrclassfield: overflow in bnrclassfield [too large degree].
  ***   at top-level: bnrclassfield(bnr,[m])
  ***                 ^----------------------
  *** bnrclassfield: overflow in bnrclassfield [too large degree].
  ***   at top-level: bnrclassfield(K,Mat(1/2))
  ***                 ^-------------------------
  *** bnrclassfield: incorrect type in allhnfmod [integer matrix] (t_MAT).
  ***   at top-level: bnrclassfield(K,1/2)
  ***                 ^--------------------
  *** bnrclassfield: incorrect type in bnr_subroup_sanitize [subgroup] (t_FRAC).
  ***   at top-level: bnrclassfield(K,matid(2))
  ***                 ^-------------------------
  *** bnrclassfield: inconsistent dimensions in ZM_hnfmod.
  ***   at top-level: bnrclassfield(K,Mat(2),3)
  ***                 ^-------------------------
  *** bnrclassfield: invalid flag in bnrclassfield [must be 0,1 or 2].
  ***   at top-level: bnrclassfield(K,Mat(2),-1)
  ***                 ^--------------------------
  *** bnrclassfield: invalid flag in bnrclassfield [must be 0,1 or 2].
  ***   at top-level: bnrclassfield(vector(6),Mat(2))
  ***                 ^-------------------------------
  *** bnrclassfield: incorrect type in checkbnr [please apply bnrinit()] (t_VEC).
  ***   at top-level: bnrclassfield(bnrinit(bnfinit(y,1),[7378697629
  ***                 ^----------------------------------------------
  *** bnrclassfield: overflow in bnrclassfield [too large degree].
  ***   at top-level: bnrclassfield(bnfinit(x))
  ***                 ^-------------------------
  *** bnrclassfield: incorrect priority in bnrclassfield: variable x = x
Total time spent: 13746